Kazunari Masutani, Yasunori Yoshioka, Yoshiharu Kimura, Chan Woo Lee
{"title":"Mechanical properties of melt-fabricated, drawn films of A–B–A triblock copolymers of poly(l-lactide) (A) and two types of polyethers (B)","authors":"Kazunari Masutani, Yasunori Yoshioka, Yoshiharu Kimura, Chan Woo Lee","doi":"10.1007/s13233-024-00271-9","DOIUrl":null,"url":null,"abstract":"<div><p>High-molecular-weight ABA triblock copolymers (PLA–PEs–PLA), consisting of poly-<span>l</span>-lactide (PLLA: A) and two types of polyethers (PEs: B), i.e., poly(oxyethylene) (PEG: polyethylene glycol) and Pluronic<sup>®</sup> [PN: poly(oxyethylene)-<i>b</i>-poly(oxypropylene)-<i>b</i>-poly(oxyethylene)], were synthesized by ring-opening polymerization of <span>l</span>-lactide by using bis-hydroxyl-terminated PEs as macroinitiators. Polymer films of these block copolymers were fabricated by the conventional hot-pressing method and uniaxially cold drawn to five times at 80 °C. Evaluation of the mechanical properties of these films revealed that the drawn films can retain high strength (ca. 100 MPa) and improved flexibility (2 GPa in modulus). It was therefore evident that the drawn films of PLLA–PEs triblock copolymers are highly useful as flexible films that can be controlled by the PEs content.</p><h3>Graphical abstract</h3><p>The A–B–A triblock copolymers consisting of PLLA and polyethers (PE: PEG and PN) were synthesized by the ROP of <span>l</span>-lactide in the presence of telechelic PE as the macroinitiators. The drawn films of these block copolymers were found to compete with the conventional petroleum plastic films and exceed the current biobased and biodegradable polymer films in terms of toughness. Thus, the oriented copolymer films were shown to be highly useful for flexible PLLA-based films.</p>\n<div><figure><div><div><picture><img></picture></div></div></figure></div></div>","PeriodicalId":688,"journal":{"name":"Macromolecular Research","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Research","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13233-024-00271-9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
High-molecular-weight ABA triblock copolymers (PLA–PEs–PLA), consisting of poly-l-lactide (PLLA: A) and two types of polyethers (PEs: B), i.e., poly(oxyethylene) (PEG: polyethylene glycol) and Pluronic® [PN: poly(oxyethylene)-b-poly(oxypropylene)-b-poly(oxyethylene)], were synthesized by ring-opening polymerization of l-lactide by using bis-hydroxyl-terminated PEs as macroinitiators. Polymer films of these block copolymers were fabricated by the conventional hot-pressing method and uniaxially cold drawn to five times at 80 °C. Evaluation of the mechanical properties of these films revealed that the drawn films can retain high strength (ca. 100 MPa) and improved flexibility (2 GPa in modulus). It was therefore evident that the drawn films of PLLA–PEs triblock copolymers are highly useful as flexible films that can be controlled by the PEs content.
Graphical abstract
The A–B–A triblock copolymers consisting of PLLA and polyethers (PE: PEG and PN) were synthesized by the ROP of l-lactide in the presence of telechelic PE as the macroinitiators. The drawn films of these block copolymers were found to compete with the conventional petroleum plastic films and exceed the current biobased and biodegradable polymer films in terms of toughness. Thus, the oriented copolymer films were shown to be highly useful for flexible PLLA-based films.
期刊介绍:
Original research on all aspects of polymer science, engineering and technology, including nanotechnology
Presents original research articles on all aspects of polymer science, engineering and technology
Coverage extends to such topics as nanotechnology, biotechnology and information technology
The English-language journal of the Polymer Society of Korea
Macromolecular Research is a scientific journal published monthly by the Polymer Society of Korea. Macromolecular Research publishes original researches on all aspects of polymer science, engineering, and technology as well as new emerging technologies using polymeric materials including nanotechnology, biotechnology, and information technology in forms of Articles, Communications, Notes, Reviews, and Feature articles.