Nerve Models of Subdivision Bifiltrations

Michael Lesnick, Ken McCabe
{"title":"Nerve Models of Subdivision Bifiltrations","authors":"Michael Lesnick, Ken McCabe","doi":"arxiv-2406.07679","DOIUrl":null,"url":null,"abstract":"We study the size of Sheehy's subdivision bifiltrations, up to homotopy. We\nfocus in particular on the subdivision-Rips bifiltration $\\mathcal{SR}(X)$ of a\nmetric space $X$, the only density-sensitive bifiltration on metric spaces\nknown to satisfy a strong robustness property. Given a simplicial filtration\n$\\mathcal{F}$ with a total of $m$ maximal simplices across all indices, we\nintroduce a nerve-based simplicial model for its subdivision bifiltration\n$\\mathcal{SF}$ whose $k$-skeleton has size $O(m^{k+1})$. We also show that the\n$0$-skeleton of any simplicial model of $\\mathcal{SF}$ has size at least $m$.\nWe give several applications: For an arbitrary metric space $X$, we introduce a\n$\\sqrt{2}$-approximation to $\\mathcal{SR}(X)$, denoted $\\mathcal{J}(X)$, whose\n$k$-skeleton has size $O(|X|^{k+2})$. This improves on the previous best\napproximation bound of $\\sqrt{3}$, achieved by the degree-Rips bifiltration,\nwhich implies that $\\mathcal{J}(X)$ is more robust than degree-Rips. Moreover,\nwe show that the approximation factor of $\\sqrt{2}$ is tight; in particular,\nthere exists no exact model of $\\mathcal{SR}(X)$ with poly-size skeleta. On the\nother hand, we show that for $X$ in a fixed-dimensional Euclidean space with\nthe $\\ell_p$-metric, there exists an exact model of $\\mathcal{SR}(X)$ with\npoly-size skeleta for $p\\in \\{1, \\infty\\}$, as well as a\n$(1+\\epsilon)$-approximation to $\\mathcal{SR}(X)$ with poly-size skeleta for\nany $p \\in (1, \\infty)$ and fixed ${\\epsilon > 0}$.","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.07679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the size of Sheehy's subdivision bifiltrations, up to homotopy. We focus in particular on the subdivision-Rips bifiltration $\mathcal{SR}(X)$ of a metric space $X$, the only density-sensitive bifiltration on metric spaces known to satisfy a strong robustness property. Given a simplicial filtration $\mathcal{F}$ with a total of $m$ maximal simplices across all indices, we introduce a nerve-based simplicial model for its subdivision bifiltration $\mathcal{SF}$ whose $k$-skeleton has size $O(m^{k+1})$. We also show that the $0$-skeleton of any simplicial model of $\mathcal{SF}$ has size at least $m$. We give several applications: For an arbitrary metric space $X$, we introduce a $\sqrt{2}$-approximation to $\mathcal{SR}(X)$, denoted $\mathcal{J}(X)$, whose $k$-skeleton has size $O(|X|^{k+2})$. This improves on the previous best approximation bound of $\sqrt{3}$, achieved by the degree-Rips bifiltration, which implies that $\mathcal{J}(X)$ is more robust than degree-Rips. Moreover, we show that the approximation factor of $\sqrt{2}$ is tight; in particular, there exists no exact model of $\mathcal{SR}(X)$ with poly-size skeleta. On the other hand, we show that for $X$ in a fixed-dimensional Euclidean space with the $\ell_p$-metric, there exists an exact model of $\mathcal{SR}(X)$ with poly-size skeleta for $p\in \{1, \infty\}$, as well as a $(1+\epsilon)$-approximation to $\mathcal{SR}(X)$ with poly-size skeleta for any $p \in (1, \infty)$ and fixed ${\epsilon > 0}$.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
细分双层神经模型
我们研究谢希细分分层的大小,直至同调。我们特别关注公度空间 $X$ 的细分-Rips 双分层 $\mathcal{SR}(X)$,这是已知公度空间上唯一满足强鲁棒性的密度敏感双分层。给定一个简单滤过$mathcal{F}$,它在所有索引中总共有$m$个最大简单,我们为它的细分双分层$mathcal{SF}$引入了一个基于神经的简单模型,其$k$骨架的大小为$O(m^{k+1})$。我们还证明了$\mathcal{SF}$的任何简单模型的$0$骨架的大小至少为$m$:对于任意度量空间 $X$,我们引入了一个与 $\mathcal{SR}(X)$类似的$sqrt{2}$,表示为 $\mathcal{J}(X)$,其$k$骨架的大小为 $O(|X|^{k+2})$。这改进了之前通过度-里普斯二分法得到的最佳近似边界$\sqrt{3}$,这意味着$\mathcal{J}(X)$比度-里普斯更稳健。此外,我们还证明了 $\sqrt{2}$ 的近似因子是紧密的;特别是,不存在具有多尺寸骨架的 $\mathcal{SR}(X)$ 精确模型。另一方面,我们证明,对于固定维度欧几里得空间中带有 $\ell_p$ 度量的 $X$,对于 $p in \{1、\in (1, \infty)$中的任意$p和固定的${epsilon > 0}$,都存在一个具有多尺寸骨架的$mathcal{SR}(X)$精确模型,以及一个$(1+\epsilon)$近似的$mathcal{SR}(X)$模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tensor triangular geometry of modules over the mod 2 Steenrod algebra Ring operads and symmetric bimonoidal categories Inferring hyperuniformity from local structures via persistent homology Computing the homology of universal covers via effective homology and discrete vector fields Geometric representation of cohomology classes for the Lie groups Spin(7) and Spin(8)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1