DMFNet: deep matrix factorization network for image compressed sensing

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-06-26 DOI:10.1007/s00530-024-01380-2
Hengyou Wang, Haocheng Li, Xiang Jiang
{"title":"DMFNet: deep matrix factorization network for image compressed sensing","authors":"Hengyou Wang, Haocheng Li, Xiang Jiang","doi":"10.1007/s00530-024-01380-2","DOIUrl":null,"url":null,"abstract":"<p>Due to its outstanding performance in image processing, deep learning (DL) is successfully utilized in compressed sensing (CS) reconstruction. However, most existing DL-based reconstruction methods capture local features mainly through stacked convolutional layers while ignoring global structural information. In this paper, we propose a novel deep matrix factorization network (dubbed DMFNet), which takes advantage of detailed textures and global structural information of images to achieve better CS reconstruction. Specifically, the proposed DMFNet contains the sampling-initialization module and the DMF reconstruction module. In the sampling-initialization module, a saliency detector is employed to evaluate the salience of different regions and generate the corresponding feature map. Then, a block ratio allocation strategy (BRA) is developed to allocate CS ratios based on the feature map adaptively. Subsequently, we perform a block-by-block initialization reconstruction by a derived mathematical formula. In the DMF reconstruction module, we explore the global structural information by the low-rank matrix factorization. For the variable updating, we design the variables updating networks based on the deep unfolding networks (DUNs) and the U-net but not in a conventional way based on mathematical formulas. Extensive experimental results demonstrate that the proposed DMFNet obtains better reconstruction quality and noise robustness on several benchmark datasets compared to state-of-the-art methods.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00530-024-01380-2","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Due to its outstanding performance in image processing, deep learning (DL) is successfully utilized in compressed sensing (CS) reconstruction. However, most existing DL-based reconstruction methods capture local features mainly through stacked convolutional layers while ignoring global structural information. In this paper, we propose a novel deep matrix factorization network (dubbed DMFNet), which takes advantage of detailed textures and global structural information of images to achieve better CS reconstruction. Specifically, the proposed DMFNet contains the sampling-initialization module and the DMF reconstruction module. In the sampling-initialization module, a saliency detector is employed to evaluate the salience of different regions and generate the corresponding feature map. Then, a block ratio allocation strategy (BRA) is developed to allocate CS ratios based on the feature map adaptively. Subsequently, we perform a block-by-block initialization reconstruction by a derived mathematical formula. In the DMF reconstruction module, we explore the global structural information by the low-rank matrix factorization. For the variable updating, we design the variables updating networks based on the deep unfolding networks (DUNs) and the U-net but not in a conventional way based on mathematical formulas. Extensive experimental results demonstrate that the proposed DMFNet obtains better reconstruction quality and noise robustness on several benchmark datasets compared to state-of-the-art methods.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DMFNet:用于图像压缩传感的深度矩阵因式分解网络
由于深度学习(DL)在图像处理方面的出色表现,它被成功地应用于压缩传感(CS)重建中。然而,大多数现有的基于深度学习的重建方法主要通过堆叠卷积层捕捉局部特征,而忽略了全局结构信息。在本文中,我们提出了一种新颖的深度矩阵因式分解网络(简称 DMFNet),它能利用图像的细节纹理和全局结构信息实现更好的 CS 重建。具体来说,DMFNet 包括采样初始化模块和 DMF 重建模块。在采样初始化模块中,采用显著性检测器评估不同区域的显著性,并生成相应的特征图。然后,开发出一种块比率分配策略(BRA),根据特征图自适应地分配 CS 比率。随后,我们通过推导出的数学公式进行逐块初始化重建。在 DMF 重建模块中,我们通过低秩矩阵因式分解探索全局结构信息。在变量更新方面,我们设计了基于深度展开网络(DUN)和 U 型网络的变量更新网络,而不是传统的基于数学公式的网络。广泛的实验结果表明,与最先进的方法相比,所提出的 DMFNet 在多个基准数据集上获得了更好的重建质量和噪声鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Vitamin B12: prevention of human beings from lethal diseases and its food application. Current status and obstacles of narrowing yield gaps of four major crops. Cold shock treatment alleviates pitting in sweet cherry fruit by enhancing antioxidant enzymes activity and regulating membrane lipid metabolism. Removal of proteins and lipids affects structure, in vitro digestion and physicochemical properties of rice flour modified by heat-moisture treatment. Investigating the impact of climate variables on the organic honey yield in Turkey using XGBoost machine learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1