Engineering the microstructures of manganese dioxide coupled with oxygen vacancies for boosting aqueous ammonium-ion storage in hybrid capacitors

IF 9.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Rare Metals Pub Date : 2024-07-02 DOI:10.1007/s12598-024-02818-2
Xin-Liang Han, Jie Zhang, Zuo-Shu Wang, Hussein A. Younus, De-Wei Wang
{"title":"Engineering the microstructures of manganese dioxide coupled with oxygen vacancies for boosting aqueous ammonium-ion storage in hybrid capacitors","authors":"Xin-Liang Han, Jie Zhang, Zuo-Shu Wang, Hussein A. Younus, De-Wei Wang","doi":"10.1007/s12598-024-02818-2","DOIUrl":null,"url":null,"abstract":"<p>The aqueous ammonium ion (NH<sub>4</sub><sup>+</sup>) is a promising charge carrier in virtue of its safety, environmental friendliness, abundant resources and small hydrated ionic size. The exploration of NH<sub>4</sub><sup>+</sup> host electrodes with good reversibility and large storage capacity to construct high-performance ammonium-ion hybrid capacitors (AIHCs), however, is still in its infancy. Herein, a facile etching technique is put forward to produce oxygen-deficient MnO<sub>2</sub> (O<sub>d</sub>-MnO<sub>2</sub>) as the electrode material for NH<sub>4</sub><sup>+</sup> storage. According to the experimental and theoretical calculation results, the etching process not only creates more porosity, offering abundant active sites, but also generates abundant oxygen vacancies, which modify the structure of pristine MnO<sub>2</sub>, enhance charge storage capacity and boost ion diffusion kinetics. Consequently, O<sub>d</sub>-MnO<sub>2</sub> can deliver a specific capacity of 155 mAh·g<sup>−1</sup> at 0.5 A·g<sup>−1</sup> and a good long-term cycling stability with 86.8% capacity maintained after 10,000 cycles at 5.0 A·g<sup>−1</sup>. Additionally, the NH<sub>4</sub><sup>+</sup> storage mechanism was evidenced by several ex-situ characterization analyses. To examine the actual implementation of O<sub>d</sub>-MnO<sub>2</sub> as a positive electrode for NH<sub>4</sub><sup>+</sup> full device, AIHCs are assembled with activated carbon functionalized with Fe<sub>3</sub>O<sub>4</sub> nanoparticles (Fe<sub>3</sub>O<sub>4</sub>@AC) as a negative electrode. A high specific capacitance of 184 F·g<sup>−1</sup> at 0.5 A·g<sup>−1</sup>, satisfactory energy density of 102 Wh·kg<sup>−1</sup> at 500 W·kg<sup>−1</sup>, a low self-discharge rate and good cycling durability after 10,000 cycles are attained. The electrochemical performance of these AIHCs is comparable to or surpass those of traditional supercapacitors with metal ions as charge carriers, highlighting the advantages of structural modification in enhancing the NH<sub>4</sub><sup>+</sup> storage performance.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12598-024-02818-2","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The aqueous ammonium ion (NH4+) is a promising charge carrier in virtue of its safety, environmental friendliness, abundant resources and small hydrated ionic size. The exploration of NH4+ host electrodes with good reversibility and large storage capacity to construct high-performance ammonium-ion hybrid capacitors (AIHCs), however, is still in its infancy. Herein, a facile etching technique is put forward to produce oxygen-deficient MnO2 (Od-MnO2) as the electrode material for NH4+ storage. According to the experimental and theoretical calculation results, the etching process not only creates more porosity, offering abundant active sites, but also generates abundant oxygen vacancies, which modify the structure of pristine MnO2, enhance charge storage capacity and boost ion diffusion kinetics. Consequently, Od-MnO2 can deliver a specific capacity of 155 mAh·g−1 at 0.5 A·g−1 and a good long-term cycling stability with 86.8% capacity maintained after 10,000 cycles at 5.0 A·g−1. Additionally, the NH4+ storage mechanism was evidenced by several ex-situ characterization analyses. To examine the actual implementation of Od-MnO2 as a positive electrode for NH4+ full device, AIHCs are assembled with activated carbon functionalized with Fe3O4 nanoparticles (Fe3O4@AC) as a negative electrode. A high specific capacitance of 184 F·g−1 at 0.5 A·g−1, satisfactory energy density of 102 Wh·kg−1 at 500 W·kg−1, a low self-discharge rate and good cycling durability after 10,000 cycles are attained. The electrochemical performance of these AIHCs is comparable to or surpass those of traditional supercapacitors with metal ions as charge carriers, highlighting the advantages of structural modification in enhancing the NH4+ storage performance.

Graphical abstract

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在混合电容器中设计二氧化锰与氧空位耦合的微结构,以提高水铵离子存储能力
水性铵离子(NH4+)具有安全、环保、资源丰富和水合离子尺寸小等优点,是一种很有前途的电荷载体。然而,探索具有良好可逆性和大存储容量的 NH4+ 主电极以构建高性能铵离子混合电容器(AIHC)的工作仍处于起步阶段。本文提出了一种简便的蚀刻技术来制备缺氧二氧化锰(Od-MnO2)作为存储 NH4+ 的电极材料。实验和理论计算的结果表明,刻蚀过程不仅产生了更多的孔隙,提供了丰富的活性位点,还产生了大量的氧空位,改变了原始 MnO2 的结构,提高了电荷存储容量,促进了离子扩散动力学。因此,Od-MnO2 在 0.5 A-g-1 的条件下可提供 155 mAh-g-1 的比容量,并具有良好的长期循环稳定性,在 5.0 A-g-1 条件下循环 10,000 次后仍能保持 86.8% 的容量。此外,几项原位表征分析也证明了 NH4+ 的存储机制。为了检验将 Od-MnO2 作为 NH4+ 全装置正极的实际应用情况,AIHC 与作为负极的 Fe3O4 纳米颗粒功能化活性炭(Fe3O4@AC)组装在一起。在 0.5 A-g-1 的条件下,比电容高达 184 F-g-1,在 500 W-kg-1 的条件下,能量密度达到 102 Wh-kg-1,自放电率低,并且在 10,000 次循环后具有良好的循环耐久性。这些 AIHCs 的电化学性能可与传统的以金属离子为电荷载体的超级电容器媲美,甚至更胜一筹,凸显了结构改性在提高 NH4+ 储存性能方面的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Rare Metals
Rare Metals 工程技术-材料科学:综合
CiteScore
12.10
自引率
12.50%
发文量
2919
审稿时长
2.7 months
期刊介绍: Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.
期刊最新文献
Synergistic Cu single-atoms and clusters on tubular carbon nitride for efficient photocatalytic performances Enhanced thermoelectric performance in p-type AgBiSe2 through carrier concentration optimization and valence band modification Ultrathin BiOCl crystals grown in highly disordered vapor micro-turbulence for deep ultraviolet photodetectors Recent advances in dual-atom catalysts for energy catalysis Self-supporting sea urchin-like Ni-Mo nano-materials as asymmetric electrodes for overall water splitting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1