A N–CoSe/CoSe2–C@Cu hierarchical architecture as a current collector-integrated anode for potassium-ion batteries

IF 9.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Rare Metals Pub Date : 2024-06-21 DOI:10.1007/s12598-024-02788-5
Zi-Jie Mu, Yan-Jun Gao, Wen-Shuai Dong, Zong-You Li, Qing-Yi Song, Han-Jiao Huang, Li-Dong Xing, Jian-Guo Zhang, Wei Wang, Qi-Yao Yu
{"title":"A N–CoSe/CoSe2–C@Cu hierarchical architecture as a current collector-integrated anode for potassium-ion batteries","authors":"Zi-Jie Mu, Yan-Jun Gao, Wen-Shuai Dong, Zong-You Li, Qing-Yi Song, Han-Jiao Huang, Li-Dong Xing, Jian-Guo Zhang, Wei Wang, Qi-Yao Yu","doi":"10.1007/s12598-024-02788-5","DOIUrl":null,"url":null,"abstract":"<p>The highly reversible insertion/extraction of large-radius K<sup>+</sup> into electrode materials remains a tough goal, especially for conversion-type materials. Herein, we design a current collector-integrated electrode (N–CoSe/CoSe<sub>2</sub>–C@Cu) as an advanced anode for potassium-ion battery (PIBs). The conductive CoSe/CoSe<sub>2</sub> heterojunction with rich Se vacancy defects, conductive sp<sup>2</sup> N-doped carbon layer, and the elastic copper foil matrix can greatly accelerate the electron transfer and enhance the structural stability. Consequently, the well-designed N–CoSe/CoSe<sub>2</sub>–C@Cu current collector-integrated electrode displays enhanced potassium storage performance with regard to a high capacity (325.1 mAh·g<sup>−1</sup> at 0.1 A·g<sup>−1</sup> after 200 cycles), an exceptional rate capability (223.5 mAh·g<sup>−1</sup> at 2000 mA·g<sup>−1</sup>), and an extraordinary long-term cycle stability (a capacity fading of only 0.019% per cycle over 1200 cycles at 2000 mA·g<sup>−1</sup>). Impressively, ex situ scanning electron microscopy (SEM) characterizations prove that the elastic structure of copper foil is merged into the cleverly designed N–CoSe/CoSe<sub>2</sub>–C@Cu heterostructure, which buffers the deformation of structure and volume and greatly promotes the cycle life during the potassium/depotassium process.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12598-024-02788-5","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The highly reversible insertion/extraction of large-radius K+ into electrode materials remains a tough goal, especially for conversion-type materials. Herein, we design a current collector-integrated electrode (N–CoSe/CoSe2–C@Cu) as an advanced anode for potassium-ion battery (PIBs). The conductive CoSe/CoSe2 heterojunction with rich Se vacancy defects, conductive sp2 N-doped carbon layer, and the elastic copper foil matrix can greatly accelerate the electron transfer and enhance the structural stability. Consequently, the well-designed N–CoSe/CoSe2–C@Cu current collector-integrated electrode displays enhanced potassium storage performance with regard to a high capacity (325.1 mAh·g−1 at 0.1 A·g−1 after 200 cycles), an exceptional rate capability (223.5 mAh·g−1 at 2000 mA·g−1), and an extraordinary long-term cycle stability (a capacity fading of only 0.019% per cycle over 1200 cycles at 2000 mA·g−1). Impressively, ex situ scanning electron microscopy (SEM) characterizations prove that the elastic structure of copper foil is merged into the cleverly designed N–CoSe/CoSe2–C@Cu heterostructure, which buffers the deformation of structure and volume and greatly promotes the cycle life during the potassium/depotassium process.

Graphical abstract

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将 N-CoSe/CoSe2-C@Cu 分层结构作为钾离子电池的集流集成阳极
将大半径 K+ 高度可逆地插入/提取到电极材料中仍然是一个艰巨的目标,尤其是对于转换型材料而言。在此,我们设计了一种集流集成电极(N-CoSe/CoSe2-C@Cu),作为钾离子电池(PIBs)的先进阳极。具有丰富Se空位缺陷的导电CoSe/CoSe2异质结、导电的sp2 N掺杂碳层以及弹性铜箔基体可大大加速电子转移并增强结构稳定性。因此,精心设计的 N-CoSe/CoSe2-C@Cu 集流集成电极具有更高的钾存储性能,包括高容量(200 次循环后,在 0.1 A-g-1 条件下为 325.1 mAh-g-1)、卓越的速率能力(在 2000 mA-g-1 条件下为 223.5 mAh-g-1)和非凡的长期循环稳定性(在 2000 mA-g-1 条件下循环 1200 次,每次循环的容量衰减仅为 0.019%)。令人印象深刻的是,原位扫描电子显微镜(SEM)表征证明,铜箔的弹性结构与巧妙设计的 N-CoSe/CoSe2-C@Cu 异质结构融为一体,从而缓冲了结构和体积的变形,大大延长了钾/脱钾过程中的循环寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Rare Metals
Rare Metals 工程技术-材料科学:综合
CiteScore
12.10
自引率
12.50%
发文量
2919
审稿时长
2.7 months
期刊介绍: Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.
期刊最新文献
Portevin–Le Chatelier (PLC) effect induced by different deformation mechanisms in Ni–25Mo–8Cr alloy during high-temperature tensile deformation Magnetic properties and microstructures of multi-component Sm–Co-based films prepared by high-throughput experiments Coercivity enhancement of nanocrystalline Ce-based magnets utilizing simplified one-step hot deformation process Fluorinated N,P co-doped biomass carbon with high-rate performance as cathode material for lithium/fluorinated carbon battery WSe2/MoSe2 with a better-matched heterointerface dominating high-performance potassium/sodium storage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1