Machine Learning Combining High-Temperature Experiments for the Prediction of Wetting Angle of Mold Fluxes

Zichao Wang, Kun Dou, Wanlin Wang, Haihui Zhang, Jie Zeng
{"title":"Machine Learning Combining High-Temperature Experiments for the Prediction of Wetting Angle of Mold Fluxes","authors":"Zichao Wang, Kun Dou, Wanlin Wang, Haihui Zhang, Jie Zeng","doi":"10.1007/s11663-024-03191-2","DOIUrl":null,"url":null,"abstract":"<p>Direct measurement of the wetting angles of the mold fluxes is a strenuous work and time-consuming, and a mathematical model relating the wetting angle of mold flux to its chemical composition is rarely found up to now. In this work, multiple linear regression (MLR), backpropagation neural network (BPNN), and GA-BP neural network (GA-BPNN) are used to model and predict the wetting angle of mold flux. Results show that the accuracy of MLR, BPNN, and GA-BPNN model is 76, 62, and 83 pct; the GA-BPNN model has the highest prediction accuracy. In addition, according to the standardized coefficients in the MLR model, the influence degree of different chemical components on the wetting angle of mold fluxes is analyzed. The importance of the influence of various components on the wetting angle is Fe<sub>2</sub>O<sub>3</sub>, F<sup>−</sup>, Li<sub>2</sub>O, Na<sub>2</sub>O, R, MnO, Al<sub>2</sub>O<sub>3</sub>, B<sub>2</sub>O<sub>3</sub>, and MgO from high to low. Among them, Fe<sub>2</sub>O<sub>3</sub>, Li<sub>2</sub>O, Na<sub>2</sub>O, R, and MnO have a negative effect on the wetting angle of mold flux, while F<sup>−</sup>, Al<sub>2</sub>O<sub>3</sub>, B<sub>2</sub>O<sub>3</sub>, and MgO have a positive effect. The established GA-BPNN model could facilitate the design and optimization of mold slag in the steel continuous casting process.</p>","PeriodicalId":18613,"journal":{"name":"Metallurgical and Materials Transactions B","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical and Materials Transactions B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11663-024-03191-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Direct measurement of the wetting angles of the mold fluxes is a strenuous work and time-consuming, and a mathematical model relating the wetting angle of mold flux to its chemical composition is rarely found up to now. In this work, multiple linear regression (MLR), backpropagation neural network (BPNN), and GA-BP neural network (GA-BPNN) are used to model and predict the wetting angle of mold flux. Results show that the accuracy of MLR, BPNN, and GA-BPNN model is 76, 62, and 83 pct; the GA-BPNN model has the highest prediction accuracy. In addition, according to the standardized coefficients in the MLR model, the influence degree of different chemical components on the wetting angle of mold fluxes is analyzed. The importance of the influence of various components on the wetting angle is Fe2O3, F, Li2O, Na2O, R, MnO, Al2O3, B2O3, and MgO from high to low. Among them, Fe2O3, Li2O, Na2O, R, and MnO have a negative effect on the wetting angle of mold flux, while F, Al2O3, B2O3, and MgO have a positive effect. The established GA-BPNN model could facilitate the design and optimization of mold slag in the steel continuous casting process.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器学习结合高温实验预测模具助焊剂的润湿角
直接测量模具助熔剂的润湿角是一项艰巨的工作,而且耗时较长,迄今为止还很少发现将模具助熔剂的润湿角与其化学成分相关联的数学模型。本文采用多元线性回归(MLR)、反向传播神经网络(BPNN)和 GA-BP 神经网络(GA-BPNN)对模具助焊剂的润湿角进行建模和预测。结果表明,MLR、BPNN 和 GA-BPNN 模型的准确度分别为 76、62 和 83%,其中 GA-BPNN 模型的预测准确度最高。此外,根据 MLR 模型中的标准化系数,分析了不同化学组分对模具助熔剂润湿角的影响程度。各种成分对润湿角影响的重要程度由高到低依次为 Fe2O3、F-、Li2O、Na2O、R、MnO、Al2O3、B2O3 和 MgO。其中,Fe2O3、Li2O、Na2O、R 和 MnO 对模具通量的润湿角有负面影响,而 F-、Al2O3、B2O3 和 MgO 则有正面影响。所建立的 GA-BPNN 模型有助于钢铁连铸过程中结晶器熔渣的设计和优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synergistic Effect of Graphite and Fly Ash on the Microstructural Evolution and Tribological Characteristics of Fe-Cu-Based Wind Turbine-Sintered Brake Pad Materials Production of Low-Oxygen Ti Powder by Magnesiothermic Reduction of TiO2 in MgCl2–KCl–CeCl3 Molten Salt Coupled CFD-DEM with Flow and Heat Transfer to Investigate the Melting and Motion of Alloy Manufacturing High Strength-Toughness High-Nitrogen Stainless Bearing Steel 30Cr15Mo1VN by Pressurized Duplex Process In Situ Observation of Aggregation of Calcium Aluminate Inclusions at Steel/Ar Interface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1