首页 > 最新文献

Metallurgical and Materials Transactions B最新文献

英文 中文
Production of Low-Oxygen Ti Powder by Magnesiothermic Reduction of TiO2 in MgCl2–KCl–CeCl3 Molten Salt 在 MgCl2-KCl-CeCl3 熔盐中通过镁热还原 TiO2 生产低氧钛粉末
Pub Date : 2024-09-17 DOI: 10.1007/s11663-024-03251-7
Liguo Zhu, Zuqing Zhang, Lingxin Kong, Chengyuan Wang, Bin Yang, Baoqiang Xu

Ti is produced by the Kroll method, mainly by carbothermic chlorination, magnesiothermic reduction, and vacuum distillation, which result in complex processes, low efficiency, and high cost. Although Ti has many excellent properties, its high production costs limit its widespread applications. There is an urgent need to develop new Ti extraction processes to reduce the cost of Ti production. In this study, we propose a new method for the direct preparation of low-oxygen Ti powder from TiO2 using Mg as a reducing agent and the formation of CeOCl (2Mg (l) + TiO2 (s) + 2CeCl3 (l) = Ti (s) + 2CeOCl (s) + 2MgCl2 (l)). First, a deoxidization experiment of Ti with Mg as a deoxidizer was conducted, and the ability of Mg to deoxidize Ti was demonstrated. At 1273 K, when the activity of CeCl3 was 1, the oxygen concentrations of Ti-A and Ti-B were 380 and 270 ppm, respectively. Subsequently, the TiO2 reduction experiment was conducted using Mg as the reducing agent. The results showed that MgO activity was effectively reduced by the formation of CeOCl (MgO(s) + CeCl3(l) = MgCl2(l) + CeOCl(s)). When the system reached the Mg/MgCl2/CeOCl/CeCl3 equilibrium, low-oxygen Ti powder below 1000 ppm was directly produced from TiO2.

钛是通过克罗尔法生产的,主要是通过碳热氯化、镁热还原和真空蒸馏,工艺复杂、效率低、成本高。虽然钛具有许多优异的性能,但其高昂的生产成本限制了它的广泛应用。因此迫切需要开发新的钛提取工艺来降低钛的生产成本。在本研究中,我们提出了一种以 Mg 为还原剂并形成 CeOCl(2Mg (l) + TiO2 (s) + 2CeCl3 (l) = Ti (s) + 2CeOCl (s) + 2MgCl2 (l)),直接从 TiO2 制备低氧 Ti 粉末的新方法。首先,以 Mg 为脱氧剂对 Ti 进行了脱氧实验,证明了 Mg 对 Ti 的脱氧能力。在 1273 K 时,当 CeCl3 的活性为 1 时,Ti-A 和 Ti-B 的氧浓度分别为 380 和 270 ppm。随后,以 Mg 为还原剂进行了 TiO2 还原实验。结果表明,CeOCl 的形成有效地降低了 MgO 的活性(MgO(s) + CeCl3(l) = MgCl2(l) + CeOCl(s))。当系统达到 Mg/MgCl2/CeOCl/CeCl3 平衡时,TiO2 可直接生成低于 1000 ppm 的低氧 Ti 粉末。
{"title":"Production of Low-Oxygen Ti Powder by Magnesiothermic Reduction of TiO2 in MgCl2–KCl–CeCl3 Molten Salt","authors":"Liguo Zhu, Zuqing Zhang, Lingxin Kong, Chengyuan Wang, Bin Yang, Baoqiang Xu","doi":"10.1007/s11663-024-03251-7","DOIUrl":"https://doi.org/10.1007/s11663-024-03251-7","url":null,"abstract":"<p>Ti is produced by the Kroll method, mainly by carbothermic chlorination, magnesiothermic reduction, and vacuum distillation, which result in complex processes, low efficiency, and high cost. Although Ti has many excellent properties, its high production costs limit its widespread applications. There is an urgent need to develop new Ti extraction processes to reduce the cost of Ti production. In this study, we propose a new method for the direct preparation of low-oxygen Ti powder from TiO<sub>2</sub> using Mg as a reducing agent and the formation of CeOCl (2Mg (<i>l</i>) + TiO<sub>2</sub> (<i>s</i>) + 2CeCl<sub>3</sub> (<i>l</i>) = Ti (<i>s</i>) + 2CeOCl (<i>s</i>) + 2MgCl<sub>2</sub> (<i>l</i>)). First, a deoxidization experiment of Ti with Mg as a deoxidizer was conducted, and the ability of Mg to deoxidize Ti was demonstrated. At 1273 K, when the activity of CeCl<sub>3</sub> was 1, the oxygen concentrations of Ti-A and Ti-B were 380 and 270 ppm, respectively. Subsequently, the TiO<sub>2</sub> reduction experiment was conducted using Mg as the reducing agent. The results showed that MgO activity was effectively reduced by the formation of CeOCl (MgO(<i>s</i>) + CeCl<sub>3</sub>(<i>l</i>) = MgCl<sub>2</sub>(<i>l</i>) + CeOCl(<i>s</i>)). When the system reached the Mg/MgCl<sub>2</sub>/CeOCl/CeCl<sub>3</sub> equilibrium, low-oxygen Ti powder below 1000 ppm was directly produced from TiO<sub>2</sub>.</p>","PeriodicalId":18613,"journal":{"name":"Metallurgical and Materials Transactions B","volume":"24 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142247383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergistic Effect of Graphite and Fly Ash on the Microstructural Evolution and Tribological Characteristics of Fe-Cu-Based Wind Turbine-Sintered Brake Pad Materials 石墨和粉煤灰对铁铜基风力涡轮机烧结刹车片材料微结构演变和摩擦学特性的协同效应
Pub Date : 2024-09-17 DOI: 10.1007/s11663-024-03273-1
K. Rajesh Kannan, R. Vaira Vignesh, M. Govindaraju, T. Ram Prabhu, Abd Baghad

The research focused on the effect of graphite proportion and the incorporation of fly ash in Fe-Cu-based friction materials produced via powder metallurgy technique. Microstructural investigation of the specimens demonstrated the homogenous distribution of the secondary element (Cu), lubricant (graphite), and reinforcements (fly ash) in the matrix (Fe). A maximum density of 5.7 g/cm3 was attained for the specimens, with an overall density of 70 pct of theoretical density. FM03 specimens showed a better wear resistance of 4.7 × 10−8 g/Nm with an optimum coefficient of friction of 0.4. The specific wear rate of the conventional friction material was 97.7 pct higher than the FM03 specimens.

Graphical Abstract

研究重点是通过粉末冶金技术生产的铁铜基摩擦材料中石墨比例和粉煤灰加入量的影响。试样的微观结构研究表明,次要元素(铜)、润滑剂(石墨)和增强剂(粉煤灰)在基体(铁)中分布均匀。试样的最大密度为 5.7 克/立方厘米,总体密度为理论密度的 70%。FM03 试样的耐磨性更好,达到 4.7 × 10-8 g/Nm,最佳摩擦系数为 0.4。传统摩擦材料的比磨损率比 FM03 试样高 97.7%。
{"title":"Synergistic Effect of Graphite and Fly Ash on the Microstructural Evolution and Tribological Characteristics of Fe-Cu-Based Wind Turbine-Sintered Brake Pad Materials","authors":"K. Rajesh Kannan, R. Vaira Vignesh, M. Govindaraju, T. Ram Prabhu, Abd Baghad","doi":"10.1007/s11663-024-03273-1","DOIUrl":"https://doi.org/10.1007/s11663-024-03273-1","url":null,"abstract":"<p>The research focused on the effect of graphite proportion and the incorporation of fly ash in Fe-Cu-based friction materials produced via powder metallurgy technique. Microstructural investigation of the specimens demonstrated the homogenous distribution of the secondary element (Cu), lubricant (graphite), and reinforcements (fly ash) in the matrix (Fe). A maximum density of 5.7 g/cm<sup>3</sup> was attained for the specimens, with an overall density of 70 pct of theoretical density. FM03 specimens showed a better wear resistance of 4.7 × 10<sup>−8</sup> g/Nm with an optimum coefficient of friction of 0.4. The specific wear rate of the conventional friction material was 97.7 pct higher than the FM03 specimens.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":18613,"journal":{"name":"Metallurgical and Materials Transactions B","volume":"22 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142247309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coupled CFD-DEM with Flow and Heat Transfer to Investigate the Melting and Motion of Alloy 用流动和传热耦合 CFD-DEM 研究合金的熔化和运动
Pub Date : 2024-09-16 DOI: 10.1007/s11663-024-03274-0
Yong Liu, Shusen Cheng, Wenxuan Xu

The melting and motion of ferroalloys play a crucial role in the mass transfer and homogenization of molten steel in ladles. Heat transfer, melting, and solidification behavior of an alloy affect its size, thereby altering its motion within the gas-stirring ladle. This study established a heat transfer and solidification-melting model for alloy particles in high-temperature metal liquids. The computational fluid dynamics (CFD) method was used to simulate the fluid within the ladle, and the discrete element method (DEM) was employed for the alloy particles. This coupling approach elucidates the motion trajectories of different types of alloys in molten steel under flow and heat exchange, particle heating, melting, and shrinkage conditions. Furthermore, the effects of alloy size, initial alloy temperature, molten steel flow rate, and molten steel temperature on the melting behavior of different types of alloys were investigated. The results showed that the melting time exponentially increased with increasing alloy size or decreasing molten steel flow rate. Moreover, the alloy melting time decreased with increasing initial alloy temperature or molten steel temperature. The impact of these factors on the melting of FeCr, FeMn, FeSi, and Al alloys was also evaluated. Furthermore, FeSi and Al alloys added at different positions in the ladle with symmetric dual gas bottom blowing had a residence time of only 1 second in the molten steel and did not completely melt. These findings indicate that FeSi, Al, and FeCr alloys should be added at the 0.4R position in the symmetrical plane. Furthermore, the − 0.4R or − 0.2R positions are more favorable for the melting of FeMn.

铁合金的熔化和运动对钢包中钢水的传质和均匀化起着至关重要的作用。合金的传热、熔化和凝固行为会影响其尺寸,从而改变其在气体搅拌钢包内的运动。本研究建立了合金颗粒在高温金属液体中的传热和凝固-熔化模型。计算流体动力学(CFD)方法用于模拟钢包内的流体,离散元素法(DEM)用于模拟合金颗粒。这种耦合方法阐明了钢水中不同类型合金在流动和热交换、颗粒加热、熔化和收缩条件下的运动轨迹。此外,还研究了合金尺寸、合金初始温度、钢水流速和钢水温度对不同类型合金熔化行为的影响。结果表明,随着合金尺寸的增大或钢水流速的减小,熔化时间呈指数增长。此外,合金熔化时间随着合金初始温度或钢水温度的升高而缩短。还评估了这些因素对 FeCr、FeMn、FeSi 和 Al 合金熔化的影响。此外,在钢包中不同位置加入的 FeSi 和 Al 合金在钢水中的停留时间仅为 1 秒,并且没有完全熔化。这些发现表明,铁硅、铝和铁铬合金应添加在对称面的 0.4R 位置。此外,- 0.4R 或 - 0.2R 位置更有利于铁锰的熔化。
{"title":"Coupled CFD-DEM with Flow and Heat Transfer to Investigate the Melting and Motion of Alloy","authors":"Yong Liu, Shusen Cheng, Wenxuan Xu","doi":"10.1007/s11663-024-03274-0","DOIUrl":"https://doi.org/10.1007/s11663-024-03274-0","url":null,"abstract":"<p>The melting and motion of ferroalloys play a crucial role in the mass transfer and homogenization of molten steel in ladles. Heat transfer, melting, and solidification behavior of an alloy affect its size, thereby altering its motion within the gas-stirring ladle. This study established a heat transfer and solidification-melting model for alloy particles in high-temperature metal liquids. The computational fluid dynamics (CFD) method was used to simulate the fluid within the ladle, and the discrete element method (DEM) was employed for the alloy particles. This coupling approach elucidates the motion trajectories of different types of alloys in molten steel under flow and heat exchange, particle heating, melting, and shrinkage conditions. Furthermore, the effects of alloy size, initial alloy temperature, molten steel flow rate, and molten steel temperature on the melting behavior of different types of alloys were investigated. The results showed that the melting time exponentially increased with increasing alloy size or decreasing molten steel flow rate. Moreover, the alloy melting time decreased with increasing initial alloy temperature or molten steel temperature. The impact of these factors on the melting of FeCr, FeMn, FeSi, and Al alloys was also evaluated. Furthermore, FeSi and Al alloys added at different positions in the ladle with symmetric dual gas bottom blowing had a residence time of only 1 second in the molten steel and did not completely melt. These findings indicate that FeSi, Al, and FeCr alloys should be added at the 0.4<i>R</i> position in the symmetrical plane. Furthermore, the − 0.4<i>R</i> or − 0.2<i>R</i> positions are more favorable for the melting of FeMn.</p>","PeriodicalId":18613,"journal":{"name":"Metallurgical and Materials Transactions B","volume":"36 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142247310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Manufacturing High Strength-Toughness High-Nitrogen Stainless Bearing Steel 30Cr15Mo1VN by Pressurized Duplex Process 通过加压双相工艺制造高强度-高韧性-高氮不锈钢轴承钢 30Cr15Mo1VN
Pub Date : 2024-09-16 DOI: 10.1007/s11663-024-03276-y
Ling-Feng Xia, Hao Feng, Hua-Bing Li, Shu-Cai Zhang, Hong-Chun Zhu, Zhou-Hua Jiang

The high-nitrogen stainless bearing steel 30Cr15Mo1VN, possessing excellent tensile strength (~ 2466 MPa) and impact toughness (~ 130.3 J), was manufactured by pressurized induction melting and pressurized electroslag remelting (PIM + PESR) duplex process. Herein, the inclusion characteristics and element segregation of as-cast ingots, as well as the precipitate characteristics, retained austenite (RA) distribution were systematically investigated to clarify the effect of PESR on tensile and impact properties. Compared with PIM ingot, the lower quantity and larger spacing of inclusions in PIM + PESR ingot were beneficial to improving toughness. Besides, the dendrite segregation originating from solidification inherited to tempered steels and changed the multiphase structure and toughening mechanism. First, the lighter segregation (C, N, Cr, etc.) was induced by the high cooling rate, directional solidification, and short-time homogenization during PESR process, obtaining the higher contents of precipitates and RA in the PIM + PESR ingot. Second, the smaller precipitates and more RA were uniformly distributed in tempered PIM + PESR steel by alleviating segregation, obtaining better interface and matrix plasticity. Third, the dislocation densities of martensite and RA were increased by the greater precipitation pinning effect after PESR, and the uniform area ratios of close-packed and Bain groups were obtained, effectively inhibiting the propagation of secondary crack. Finally, the smaller strength difference between RA and martensite owing to lighter segregation after PESR, alleviated strain localization at phase interfaces and accommodated plastic deformation of matrix, thus, significantly enhancing the strength and toughness of the PIM+PESR steel.

采用加压感应熔炼和加压电渣重熔(PIM + PESR)双相工艺生产了具有优异抗拉强度(~ 2466 MPa)和冲击韧性(~ 130.3 J)的高氮不锈钢轴承钢 30Cr15Mo1VN。本文系统研究了铸锭的夹杂特性和元素偏析,以及析出物特性和残余奥氏体(RA)分布,以阐明 PESR 对拉伸和冲击性能的影响。与 PIM 钢锭相比,PIM + PESR 钢锭中夹杂物的数量更少、间距更大,有利于提高韧性。此外,凝固过程中产生的树枝晶偏析继承到回火钢中,改变了多相结构和增韧机理。首先,PESR 过程中的高冷却速率、定向凝固和短时间均化诱发了较轻的偏析(C、N、Cr 等),从而在 PIM + PESR 钢锭中获得了较高的析出物和 RA 含量。其次,PIM + PESR 回火钢中析出物较小,RA 含量较高,通过缓解偏析均匀分布,获得了较好的界面塑性和基体塑性。第三,PESR 后更大的析出针化效应提高了马氏体和 RA 的位错密度,获得了均匀的紧密堆积和贝恩基团面积比,有效抑制了二次裂纹的扩展。最后,由于 PESR 后偏析较轻,RA 和马氏体之间的强度差异较小,从而缓解了相界面的应变局部化,容纳了基体的塑性变形,从而显著提高了 PIM+PESR 钢的强度和韧性。
{"title":"Manufacturing High Strength-Toughness High-Nitrogen Stainless Bearing Steel 30Cr15Mo1VN by Pressurized Duplex Process","authors":"Ling-Feng Xia, Hao Feng, Hua-Bing Li, Shu-Cai Zhang, Hong-Chun Zhu, Zhou-Hua Jiang","doi":"10.1007/s11663-024-03276-y","DOIUrl":"https://doi.org/10.1007/s11663-024-03276-y","url":null,"abstract":"<p>The high-nitrogen stainless bearing steel 30Cr15Mo1VN, possessing excellent tensile strength (~ 2466 MPa) and impact toughness (~ 130.3 J), was manufactured by pressurized induction melting and pressurized electroslag remelting (PIM + PESR) duplex process. Herein, the inclusion characteristics and element segregation of as-cast ingots, as well as the precipitate characteristics, retained austenite (RA) distribution were systematically investigated to clarify the effect of PESR on tensile and impact properties. Compared with PIM ingot, the lower quantity and larger spacing of inclusions in PIM + PESR ingot were beneficial to improving toughness. Besides, the dendrite segregation originating from solidification inherited to tempered steels and changed the multiphase structure and toughening mechanism. First, the lighter segregation (C, N, Cr, <i>etc.</i>) was induced by the high cooling rate, directional solidification, and short-time homogenization during PESR process, obtaining the higher contents of precipitates and RA in the PIM + PESR ingot. Second, the smaller precipitates and more RA were uniformly distributed in tempered PIM + PESR steel by alleviating segregation, obtaining better interface and matrix plasticity. Third, the dislocation densities of martensite and RA were increased by the greater precipitation pinning effect after PESR, and the uniform area ratios of close-packed and Bain groups were obtained, effectively inhibiting the propagation of secondary crack. Finally, the smaller strength difference between RA and martensite owing to lighter segregation after PESR, alleviated strain localization at phase interfaces and accommodated plastic deformation of matrix, thus, significantly enhancing the strength and toughness of the PIM+PESR steel.</p>","PeriodicalId":18613,"journal":{"name":"Metallurgical and Materials Transactions B","volume":"9 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142247311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In Situ Observation of Aggregation of Calcium Aluminate Inclusions at Steel/Ar Interface 原位观察钢/铝界面铝酸钙夹杂物的聚结
Pub Date : 2024-09-16 DOI: 10.1007/s11663-024-03270-4
Juntao Ba, Qiuyue Zhou, Ying Ren, Lifeng Zhang

In the current study, the aggregation of CaO-Al2O3 inclusions with different CaO contents at the steel/Ar interface was in situ observed using the confocal laser scanning microscope. The critical acceleration distance and attractive force during the inclusion aggregation process were measured and calculated, and effects of inclusion composition and radius on the aggregation of inclusions were analyzed. When the CaO content in CaO-Al2O3 inclusions in 16Mn steels increased from 3 to 51 pct, inclusions gradually changed from solid to liquid. Solid and partial liquid inclusions aggregated to form large clusters with a maximum diameter of 446.2 μm. When the CaO content in inclusions increased from 3 to 26 pct, the critical acceleration distance between inclusion pairs decreased from 104.9 to 62.1 μm, and the attractive force between inclusion pairs decreased from 1.0 × 10−16 N~1.0 × 10−13 N to 1.0 × 10−18 N~1.0 × 10−15 N. As the host inclusion radius increased from 5~15 to 25~35 μm, the critical acceleration distance increased from 104.9 to 166.6 μm. For liquid inclusions, when the CaO content in inclusions increased from 38 to 51 pct, the critical deceleration distance increased from 59.7 to 93.6 μm, and the repulsive force increased from 1.0 × 10−17 N~5.0 × 10−15 N to 1.0 × 10−17 N~1.0 × 10−13 N. The liquid inclusion overcame the repulsive force and aggregated, when the host inclusion radius was larger than 10 μm, and the initial velocity of the guest inclusion was faster than 150 μm/s. The calculated attractive force between inclusions was larger than the theoretical value calculated by Kralchevsky-Paunov model.

在本研究中,使用激光共聚焦扫描显微镜现场观察了不同 CaO 含量的 CaO-Al2O3 包裹体在钢/Ar 界面的聚集情况。测量并计算了夹杂物聚集过程中的临界加速距离和吸引力,分析了夹杂物成分和半径对夹杂物聚集的影响。当 16Mn 钢中 CaO-Al2O3 包裹体中的 CaO 含量从 3% 增加到 51% 时,包裹体逐渐从固态变为液态。固态夹杂物和部分液态夹杂物聚集成大的团块,最大直径为 446.2 μm。当包裹体中的 CaO 含量从 3 pct 增加到 26 pct 时,包裹体对之间的临界加速距离从 104.9 μm 减小到 62.1 μm,包裹体对之间的吸引力从 1.0 × 10-16 N~1.0 × 10-13 N 减小到 1.0 × 10-18 N~1.0 × 10-15 N。对于液体包裹体,当包裹体中的 CaO 含量从 38% 增加到 51% 时,临界减速距离从 59.7 μm 增加到 93.6 μm,排斥力从 1.0 × 10-17 N~5.0 × 10-15 N 增加到 1.0 × 10-17 N~1.0 × 10-13 N。计算得出的夹杂物之间的吸引力大于克拉切夫斯基-保诺夫模型计算得出的理论值。
{"title":"In Situ Observation of Aggregation of Calcium Aluminate Inclusions at Steel/Ar Interface","authors":"Juntao Ba, Qiuyue Zhou, Ying Ren, Lifeng Zhang","doi":"10.1007/s11663-024-03270-4","DOIUrl":"https://doi.org/10.1007/s11663-024-03270-4","url":null,"abstract":"<p>In the current study, the aggregation of CaO-Al<sub>2</sub>O<sub>3</sub> inclusions with different CaO contents at the steel/Ar interface was <i>in situ</i> observed using the confocal laser scanning microscope. The critical acceleration distance and attractive force during the inclusion aggregation process were measured and calculated, and effects of inclusion composition and radius on the aggregation of inclusions were analyzed. When the CaO content in CaO-Al<sub>2</sub>O<sub>3</sub> inclusions in 16Mn steels increased from 3 to 51 pct, inclusions gradually changed from solid to liquid. Solid and partial liquid inclusions aggregated to form large clusters with a maximum diameter of 446.2 μm. When the CaO content in inclusions increased from 3 to 26 pct, the critical acceleration distance between inclusion pairs decreased from 104.9 to 62.1 μm, and the attractive force between inclusion pairs decreased from 1.0 × 10<sup>−16</sup> N~1.0 × 10<sup>−13</sup> N to 1.0 × 10<sup>−18</sup> N~1.0 × 10<sup>−15</sup> N. As the host inclusion radius increased from 5~15 to 25~35 μm, the critical acceleration distance increased from 104.9 to 166.6 μm. For liquid inclusions, when the CaO content in inclusions increased from 38 to 51 pct, the critical deceleration distance increased from 59.7 to 93.6 μm, and the repulsive force increased from 1.0 × 10<sup>−17</sup> N~5.0 × 10<sup>−15</sup> N to 1.0 × 10<sup>−17</sup> N~1.0 × 10<sup>−13</sup> N. The liquid inclusion overcame the repulsive force and aggregated, when the host inclusion radius was larger than 10 μm, and the initial velocity of the guest inclusion was faster than 150 μm/s. The calculated attractive force between inclusions was larger than the theoretical value calculated by Kralchevsky-Paunov model.</p>","PeriodicalId":18613,"journal":{"name":"Metallurgical and Materials Transactions B","volume":"14 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142247338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diffusion Quadruple vs Triple: Determining Interdiffusivities for fcc Co–Ni–Ta Alloys 扩散四重与三重:确定 fcc Co-Ni-Ta 合金的扩散系数
Pub Date : 2024-09-13 DOI: 10.1007/s11663-024-03248-2
Xue-Ting Wu, Cheng-Hui Xia, Shilin Xia, Zhongwen Shi, Xiao-Gang Lu

Although single-phase diffusion triples have been adopted successfully to deduce interdiffusivities in a much wider composition range than using diffusion couples, recent studies show that diffusion quadruples can further raise efficiency covering an even broader range of compositions than triples. In the present work, two diffusion quadruples of the fcc Co–Ni–Ta alloy system were assembled at 1473 K, allowing for a direct comparison with the former triple scheme. The composition-dependent interdiffusivities were then deduced, and mutually validated by comparing with the results calculated from the triple scheme and the traditional methods (i.e., the Sauer–Freise method and Whittle–Green method). To ensure the universality of the quadruple scheme, one diffusion quadruple was fabricated under universal preparation conditions without strict requirements of the original interfaces. By updating our two-dimensional (2D) numerical inverse scheme, the present quadruple scheme can well handle general cases with both ideal and universal original interfaces. However, since the absolute deviation is not significant and the results obtained by the quadruple scheme are fine-tuning of those from the triple scheme, both the triple and quadruple schemes are acceptable for engineering applications.

虽然单相扩散三元组已被成功地用于推导成分范围比扩散对偶宽得多的互扩散率,但最近的研究表明,扩散四元组可以进一步提高效率,涵盖的成分范围甚至比三元组更广。在本研究中,我们在 1473 K 下组装了 fcc Co-Ni-Ta 合金体系的两个扩散四元组,从而可以与之前的三元组方案进行直接比较。然后推导出与成分相关的间扩散率,并通过与三重方案和传统方法(即 Sauer-Freise 方法和 Whittle-Green 方法)计算出的结果进行比较,相互验证。为确保四重方案的通用性,我们在通用制备条件下制作了一个扩散四重体,对原始界面没有严格要求。通过更新我们的二维(2D)数值反演方案,目前的四重方案可以很好地处理理想原始界面和通用原始界面的一般情况。不过,由于绝对偏差不大,而且四重方案得到的结果是三重方案的微调结果,因此三重方案和四重方案在工程应用中都是可以接受的。
{"title":"Diffusion Quadruple vs Triple: Determining Interdiffusivities for fcc Co–Ni–Ta Alloys","authors":"Xue-Ting Wu, Cheng-Hui Xia, Shilin Xia, Zhongwen Shi, Xiao-Gang Lu","doi":"10.1007/s11663-024-03248-2","DOIUrl":"https://doi.org/10.1007/s11663-024-03248-2","url":null,"abstract":"<p>Although single-phase diffusion triples have been adopted successfully to deduce interdiffusivities in a much wider composition range than using diffusion couples, recent studies show that diffusion quadruples can further raise efficiency covering an even broader range of compositions than triples. In the present work, two diffusion quadruples of the fcc Co–Ni–Ta alloy system were assembled at 1473 K, allowing for a direct comparison with the former triple scheme. The composition-dependent interdiffusivities were then deduced, and mutually validated by comparing with the results calculated from the triple scheme and the traditional methods (<i>i.e</i>., the Sauer–Freise method and Whittle–Green method). To ensure the universality of the quadruple scheme, one diffusion quadruple was fabricated under universal preparation conditions without strict requirements of the original interfaces. By updating our two-dimensional (2D) numerical inverse scheme, the present quadruple scheme can well handle general cases with both ideal and universal original interfaces. However, since the absolute deviation is not significant and the results obtained by the quadruple scheme are fine-tuning of those from the triple scheme, both the triple and quadruple schemes are acceptable for engineering applications.</p>","PeriodicalId":18613,"journal":{"name":"Metallurgical and Materials Transactions B","volume":"9 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142247312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterizing and Controlling Abnormal Periodic Mold Level Fluctuations in a Commercial Slab Continuous Caster Using Big Data 利用大数据表征和控制商用板坯连铸机中的异常周期性模位波动
Pub Date : 2024-09-13 DOI: 10.1007/s11663-024-03275-z
Xiaoliang Meng, Sen Luo, Xiaobo Xi, Yelian Zhou, Weiling Wang, Miaoyong Zhu

The stable control of mold level is a key link in the production of high-quality continuous casting slabs. Periodic mold level fluctuation (PMLF) is common during the continuous casting process, and the abnormal PMLF has significant harmful effects on surface quality of slab. This article proposed an analysis and control method for abnormal PMLF. First, the finite impulse response (FIR) filter and fast Fourier transform (FFT) were used to remove noise interference in PMLF data and highlight the fluctuation characteristics of PMLM. Then, considering that uneven solidification has a significant impact on abnormal PMLF, the influence of chemical composition on the equilibrium Fe-C pseudo-binary diagram was calculated by Thermo-Calc software. Furthermore, roller diameter, roller spacing, casting speed, and chemical composition were chosen as the prediction indicator to predict the quality of PMLF. Random forest (RF) model shows good performance in predicting PMLF; the prediction accuracy of RF model is 92.76 pct, which is 21.39 pct higher than that of GA-BP model. Finally, the Feedforward fuzzy PID (F2FPID) controller designed in this article was used to eliminate abnormal PMLF. The average range of mold level fluctuation under the PID controller is ± 6.8 mm, while under the F2FPID controller, the average range of mold level fluctuation is ± 1.1 mm. And the F2FPID controller owns a lower overshoot of 0.48 pct and an adjusting time of 1.52 seconds, which are 94.8 pct and 59.5 pct, respectively, lower than those of the PID controller.

稳定控制结晶器液面是生产高质量连铸板坯的关键环节。连铸过程中经常出现周期性的模位波动(PMLF),异常的 PMLF 对板坯表面质量有很大的影响。本文提出了异常 PMLF 的分析和控制方法。首先,利用有限脉冲响应(FIR)滤波器和快速傅立叶变换(FFT)去除 PMLF 数据中的噪声干扰,突出 PMLM 的波动特性。然后,考虑到不均匀凝固对异常 PMLF 有显著影响,利用 Thermo-Calc 软件计算了化学成分对平衡 Fe-C 伪二元图的影响。此外,还选择了轧辊直径、轧辊间距、浇铸速度和化学成分作为预测 PMLF 质量的预测指标。随机森林(RF)模型在预测 PMLF 方面表现良好;RF 模型的预测准确率为 92.76%,比 GA-BP 模型高出 21.39%。最后,本文设计的前馈模糊 PID(F2FPID)控制器用于消除异常 PMLF。在 PID 控制器下,模位波动的平均范围为 ± 6.8 mm,而在 F2FPID 控制器下,模位波动的平均范围为 ± 1.1 mm。F2FPID 控制器的过冲为 0.48%,调节时间为 1.52 秒,分别比 PID 控制器低 94.8%和 59.5%。
{"title":"Characterizing and Controlling Abnormal Periodic Mold Level Fluctuations in a Commercial Slab Continuous Caster Using Big Data","authors":"Xiaoliang Meng, Sen Luo, Xiaobo Xi, Yelian Zhou, Weiling Wang, Miaoyong Zhu","doi":"10.1007/s11663-024-03275-z","DOIUrl":"https://doi.org/10.1007/s11663-024-03275-z","url":null,"abstract":"<p>The stable control of mold level is a key link in the production of high-quality continuous casting slabs. Periodic mold level fluctuation (PMLF) is common during the continuous casting process, and the abnormal PMLF has significant harmful effects on surface quality of slab. This article proposed an analysis and control method for abnormal PMLF. First, the finite impulse response (FIR) filter and fast Fourier transform (FFT) were used to remove noise interference in PMLF data and highlight the fluctuation characteristics of PMLM. Then, considering that uneven solidification has a significant impact on abnormal PMLF, the influence of chemical composition on the equilibrium Fe-C pseudo-binary diagram was calculated by Thermo-Calc software. Furthermore, roller diameter, roller spacing, casting speed, and chemical composition were chosen as the prediction indicator to predict the quality of PMLF. Random forest (RF) model shows good performance in predicting PMLF; the prediction accuracy of RF model is 92.76 pct, which is 21.39 pct higher than that of GA-BP model. Finally, the Feedforward fuzzy PID (F2FPID) controller designed in this article was used to eliminate abnormal PMLF. The average range of mold level fluctuation under the PID controller is ± 6.8 mm, while under the F2FPID controller, the average range of mold level fluctuation is ± 1.1 mm. And the F2FPID controller owns a lower overshoot of 0.48 pct and an adjusting time of 1.52 seconds, which are 94.8 pct and 59.5 pct, respectively, lower than those of the PID controller.</p>","PeriodicalId":18613,"journal":{"name":"Metallurgical and Materials Transactions B","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142247337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tailored Casting and Hot Rolling Temperatures for the Preparation of Hot Stamping Steel Thin Strip 用于制备热冲压钢薄板的定制铸造和热轧温度
Pub Date : 2024-09-13 DOI: 10.1007/s11663-024-03269-x
Renyi Yang, Wanlin Wang, Chenyang Zhu, Jie Zeng

Strip casting casts molten steel into thin strips, enabling direct hot rolling to produce products. A typical hot stamping steel thin strip was made by a strip casting simulator under tailored casting and hot rolling temperatures. The casting strip showed improved surface quality at a higher casting temperature (1597 °C) and a lower rolling temperature (900 °C), achieving 1275 MPa tensile strength with 12.3 pct elongation due to refined austenite grains transforming to martensite.

带钢铸造将钢水浇铸成薄钢带,然后直接进行热轧生产产品。带钢铸造模拟器在定制的铸造和热轧温度下制造了典型的热冲压薄钢带。在较高的铸造温度(1597 °C)和较低的轧制温度(900 °C)下,铸造钢带的表面质量得到改善,由于精奥氏体晶粒转变为马氏体,抗拉强度达到 1275 兆帕,伸长率为 12.3%。
{"title":"Tailored Casting and Hot Rolling Temperatures for the Preparation of Hot Stamping Steel Thin Strip","authors":"Renyi Yang, Wanlin Wang, Chenyang Zhu, Jie Zeng","doi":"10.1007/s11663-024-03269-x","DOIUrl":"https://doi.org/10.1007/s11663-024-03269-x","url":null,"abstract":"<p>Strip casting casts molten steel into thin strips, enabling direct hot rolling to produce products. A typical hot stamping steel thin strip was made by a strip casting simulator under tailored casting and hot rolling temperatures. The casting strip showed improved surface quality at a higher casting temperature (1597 °C) and a lower rolling temperature (900 °C), achieving 1275 MPa tensile strength with 12.3 pct elongation due to refined austenite grains transforming to martensite.</p>","PeriodicalId":18613,"journal":{"name":"Metallurgical and Materials Transactions B","volume":"94 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142247334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Complex Multiphase Coupling Mechanisms in the Multi-lance Top-Blown Copper Converting Furnace 多枪顶吹式铜转化炉中的复杂多相耦合机制
Pub Date : 2024-09-12 DOI: 10.1007/s11663-024-03262-4
Qijia Yang, Shiliang Yang, Junyi Hu, Hua Wang

The multi-lance top-blown converting furnace is pivotal in the converting process of molten white matte (copper content nearly 75 pct) in continuous copper smelting technology. The complex multiphase hydrodynamics and phase interaction mechanisms inherent in this furnace significantly influence converting efficiency of blister copper. This study numerically explores the intricate gas–melt flow hydrodynamics and stirring dynamics in the multi-lance top-blown converting furnace based on the OpenFOAM platform. Following model validation, this study elucidates various aspects of bath dynamics in the furnace. The findings reveal that the arrangement of multiple lances along the longitudinal axis introduces an offset effect on longitudinal momentum transfer and a superposition effect on transverse momentum transfer, unlike the single-lance blowing configuration. A linear empirical relationship between jet momentum number and length group under multi-lance top blowing is established, with a determined constant value of 3.65 for turbulent gas jet. Additionally, a strong correlation between dimensionless cavity shape index and the kinetic energy of molten slag is observed, leading to the formulation of a functional relationship equation demonstrating exponential growth: Eb = exp(− 2.81011–0.79077 ({I}_{text{cm}}) + 0.13479 ({{I}_{text{cm}}}^{2})). Moreover, both the internal flow of molten bath and the shear stress on the furnace wall exhibit a step-like periodic oscillation mode. Notably, based on the similarity observed in the main frequency peaks, a robust correlation between the two phenomena is inferred. Under conditions of small lance spacing and diameter, an increase in the cavity aspect ratio enhances momentum transfer efficiency and stirring performance of bath, but it also exacerbates erosion of the lances and the furnace. This study elucidates the multiphase mixing characteristics, phase interaction mechanisms, and furnace wall erosion patterns in a multi-lance top-blown converting furnace, providing a crucial theoretical foundation for the design, operation, and optimization of such systems.

在连续铜冶炼技术中,多枪顶吹转炉在熔融白锍(铜含量接近 75%)的转炉过程中起着关键作用。该熔炉固有的复杂多相流体动力学和相相互作用机制极大地影响了泡铜的转化效率。本研究基于 OpenFOAM 平台,对多喷嘴顶吹转炉中错综复杂的气体-熔体流动流体力学和搅拌动力学进行了数值探索。经过模型验证,本研究阐明了炉内熔池动力学的各个方面。研究结果表明,多喷枪沿纵轴布置会对纵向动量传递产生偏移效应,并对横向动量传递产生叠加效应,这与单喷枪吹炼配置不同。在多喷枪顶吹条件下,射流动量数与长度组之间建立了线性经验关系,确定的湍流气体射流常数值为 3.65。此外,还观察到无量纲空腔形状指数与熔渣动能之间存在很强的相关性,从而提出了一个显示指数增长的函数关系式:Eb = exp(- 2.81011-0.79077 ({I}_{text{cm}}}) + 0.13479 ({{I}_{text{cm}}}^{2})).此外,熔池内部流动和炉壁上的剪应力都呈现出阶梯状的周期振荡模式。值得注意的是,根据主频峰的相似性,可以推断出这两种现象之间存在着很强的相关性。在喷嘴间距和直径较小的条件下,增加空腔长宽比可以提高动量传递效率和浴槽的搅拌性能,但同时也会加剧喷嘴和炉体的侵蚀。本研究阐明了多喷枪顶吹转炉中的多相混合特性、相相互作用机制和炉壁侵蚀模式,为此类系统的设计、运行和优化提供了重要的理论基础。
{"title":"Complex Multiphase Coupling Mechanisms in the Multi-lance Top-Blown Copper Converting Furnace","authors":"Qijia Yang, Shiliang Yang, Junyi Hu, Hua Wang","doi":"10.1007/s11663-024-03262-4","DOIUrl":"https://doi.org/10.1007/s11663-024-03262-4","url":null,"abstract":"<p>The multi-lance top-blown converting furnace is pivotal in the converting process of molten white matte (copper content nearly 75 pct) in continuous copper smelting technology. The complex multiphase hydrodynamics and phase interaction mechanisms inherent in this furnace significantly influence converting efficiency of blister copper. This study numerically explores the intricate gas–melt flow hydrodynamics and stirring dynamics in the multi-lance top-blown converting furnace based on the OpenFOAM platform. Following model validation, this study elucidates various aspects of bath dynamics in the furnace. The findings reveal that the arrangement of multiple lances along the longitudinal axis introduces an offset effect on longitudinal momentum transfer and a superposition effect on transverse momentum transfer, unlike the single-lance blowing configuration. A linear empirical relationship between jet momentum number and length group under multi-lance top blowing is established, with a determined constant value of 3.65 for turbulent gas jet. Additionally, a strong correlation between dimensionless cavity shape index and the kinetic energy of molten slag is observed, leading to the formulation of a functional relationship equation demonstrating exponential growth: <b><i>E</i></b><sub><i>b</i></sub> = exp(− 2.81011–0.79077 <span>({I}_{text{cm}})</span> + 0.13479 <span>({{I}_{text{cm}}}^{2})</span>). Moreover, both the internal flow of molten bath and the shear stress on the furnace wall exhibit a step-like periodic oscillation mode. Notably, based on the similarity observed in the main frequency peaks, a robust correlation between the two phenomena is inferred. Under conditions of small lance spacing and diameter, an increase in the cavity aspect ratio enhances momentum transfer efficiency and stirring performance of bath, but it also exacerbates erosion of the lances and the furnace. This study elucidates the multiphase mixing characteristics, phase interaction mechanisms, and furnace wall erosion patterns in a multi-lance top-blown converting furnace, providing a crucial theoretical foundation for the design, operation, and optimization of such systems.</p>","PeriodicalId":18613,"journal":{"name":"Metallurgical and Materials Transactions B","volume":"93 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142208276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deoxidation of Nickel-based Superalloy Using Carbon under High Vacuum Degree 高真空度下使用碳对镍基超合金进行脱氧处理
Pub Date : 2024-09-12 DOI: 10.1007/s11663-024-03258-0
Xu-Ze Li, Hao Feng, Hua-Bing Li, Shou-Xing Yang, Shu-Cai Zhang, Hong-Chun Zhu, Jong-Jin Pak, Zhou-Hua Jiang

The vacuum carbon deoxidation process via CO formation has the ability to achieve high cleanliness of nickel alloys in vacuum induction melting. In the present study, the effect of vacuum degree in melting chamber, melt temperature, and initial carbon content on deoxidation efficiency was studied. The reactions of vacuum carbon deoxidization and MgO decomposition were strongly affected by chamber pressure and melt temperature. Low chamber pressure and high melt temperature resulted in a severe MgO-crucible decomposition reaction and increased oxygen supply to molten nickel alloy, and hence, decreased the deoxidation efficiency. Therefore, moderate vacuum degree in the chamber and lower melt temperature would improve the vacuum carbon deoxidation efficiency. The reaction rates of vacuum carbon deoxidization and MgO decomposition were controlled by the mass transfer of oxygen in liquid boundary layers near the reaction interfaces. The nitrogen in molten nickel alloy could be well removed together with carbon deoxidation under the vacuum conditions in the present study. A prediction model of deoxidation and carbon loss in vacuum melting process was established to determine the optimum temperature and vacuum conditions in vacuum carbon deoxidation process.

通过 CO 生成的真空碳脱氧工艺能够在真空感应熔炼中实现镍合金的高清洁度。本研究探讨了熔炼室真空度、熔体温度和初始碳含量对脱氧效率的影响。真空碳脱氧和氧化镁分解反应受到腔室压力和熔体温度的强烈影响。低真空室压力和高熔体温度会导致严重的氧化镁脆性分解反应,增加熔融镍合金的供氧量,从而降低脱氧效率。因此,适度的真空室真空度和较低的熔体温度会提高真空碳脱氧效率。真空碳脱氧和氧化镁分解的反应速率受反应界面附近液体边界层中氧的传质控制。在本研究中,在真空条件下,熔融镍合金中的氮能与碳脱氧一起被很好地去除。建立了真空熔炼过程中脱氧和碳损失的预测模型,以确定真空碳脱氧过程中的最佳温度和真空条件。
{"title":"Deoxidation of Nickel-based Superalloy Using Carbon under High Vacuum Degree","authors":"Xu-Ze Li, Hao Feng, Hua-Bing Li, Shou-Xing Yang, Shu-Cai Zhang, Hong-Chun Zhu, Jong-Jin Pak, Zhou-Hua Jiang","doi":"10.1007/s11663-024-03258-0","DOIUrl":"https://doi.org/10.1007/s11663-024-03258-0","url":null,"abstract":"<p>The vacuum carbon deoxidation process <i>via</i> CO formation has the ability to achieve high cleanliness of nickel alloys in vacuum induction melting. In the present study, the effect of vacuum degree in melting chamber, melt temperature, and initial carbon content on deoxidation efficiency was studied. The reactions of vacuum carbon deoxidization and MgO decomposition were strongly affected by chamber pressure and melt temperature. Low chamber pressure and high melt temperature resulted in a severe MgO-crucible decomposition reaction and increased oxygen supply to molten nickel alloy, and hence, decreased the deoxidation efficiency. Therefore, moderate vacuum degree in the chamber and lower melt temperature would improve the vacuum carbon deoxidation efficiency. The reaction rates of vacuum carbon deoxidization and MgO decomposition were controlled by the mass transfer of oxygen in liquid boundary layers near the reaction interfaces. The nitrogen in molten nickel alloy could be well removed together with carbon deoxidation under the vacuum conditions in the present study. A prediction model of deoxidation and carbon loss in vacuum melting process was established to determine the optimum temperature and vacuum conditions in vacuum carbon deoxidation process.</p>","PeriodicalId":18613,"journal":{"name":"Metallurgical and Materials Transactions B","volume":"60 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142208275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Metallurgical and Materials Transactions B
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1