Fanmao Wang, Sam Marcuson, Manqiu Xu, Mike Walker, Mansoor Barati
{"title":"Extraction of Nickel from Ultramafic Nickel Sulfide Concentrate by Metallic Iron Addition","authors":"Fanmao Wang, Sam Marcuson, Manqiu Xu, Mike Walker, Mansoor Barati","doi":"10.1007/s11663-024-03179-y","DOIUrl":null,"url":null,"abstract":"<p>Abundant low-grade nickel sulfide ore reserves hold potential as nickel resources but are hindered by high magnesium silicate content, limiting efficient utilization. The authors investigated the possibility of extracting nickel from a low-grade ultramafic nickel sulfide concentrate into ferronickel alloy. The nickel extraction study involved thermal upgrading and physical separation. Thermal upgrading efficiently concentrated nickel values from ultramafic concentrate into ferronickel alloy, achieving over 90 pct extraction with more than 40 pct nickel grade and a characteristic particle size of d<sub>80</sub>=100 µm. The presence of magnesium silicate gangues in the concentrate adversely impacted the thermal extraction of nickel. Multiple thermal treatment variables have been studied to improve nickel extraction efficiency, including metallic iron addition rate, heating duration, temperature, additives, and atmosphere. The proposed solid-state thermal upgrading method avoided smelting of materials and generation of sulfur dioxide. Magnetic separation recovered approximately 85 pct of nickel in the thermal treatment products into a ferronickel concentrate at 20 pct nickel grade.</p>","PeriodicalId":18613,"journal":{"name":"Metallurgical and Materials Transactions B","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical and Materials Transactions B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11663-024-03179-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abundant low-grade nickel sulfide ore reserves hold potential as nickel resources but are hindered by high magnesium silicate content, limiting efficient utilization. The authors investigated the possibility of extracting nickel from a low-grade ultramafic nickel sulfide concentrate into ferronickel alloy. The nickel extraction study involved thermal upgrading and physical separation. Thermal upgrading efficiently concentrated nickel values from ultramafic concentrate into ferronickel alloy, achieving over 90 pct extraction with more than 40 pct nickel grade and a characteristic particle size of d80=100 µm. The presence of magnesium silicate gangues in the concentrate adversely impacted the thermal extraction of nickel. Multiple thermal treatment variables have been studied to improve nickel extraction efficiency, including metallic iron addition rate, heating duration, temperature, additives, and atmosphere. The proposed solid-state thermal upgrading method avoided smelting of materials and generation of sulfur dioxide. Magnetic separation recovered approximately 85 pct of nickel in the thermal treatment products into a ferronickel concentrate at 20 pct nickel grade.