{"title":"High-Stability IWO Thin-Film Transistors Under Microwave Annealing for Low Thermal Budget Application","authors":"Yi-Xuan Chen;Yi-Lin Wang;Fu-Jyuan Li;Hui-Hsuan Li;Meng-Chien Lee;Yu-Hsien Lin;Chao-Hsin Chien","doi":"10.1109/TNANO.2024.3413794","DOIUrl":null,"url":null,"abstract":"In this work, we investigated the effects of microwave thermal annealing (MWA) on the electrical performance and stability of Indium-Tungsten-Oxide (IWO) thin-film transistors (TFTs). Under MWA treatment at 600 W, the IWO-TFTs exhibited a subthreshold swing (SS) of 144 mV/dec and a threshold voltage (V\n<sub>T</sub>\n) of 0.9 V, demonstrating superior resistance to stress-induced degradation. The TFTs treated with MWA displayed enhanced performance compared to the as-fabricated ones in bias stress stability. As a result, MWA showed significant potential for repairing defects through post-deposition annealing with a reduced thermal budget, thereby presenting a promising application for developing back-end-of-line (BEOL) compatible oxide semiconductor technology.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"23 ","pages":"516-520"},"PeriodicalIF":2.1000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10556823/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we investigated the effects of microwave thermal annealing (MWA) on the electrical performance and stability of Indium-Tungsten-Oxide (IWO) thin-film transistors (TFTs). Under MWA treatment at 600 W, the IWO-TFTs exhibited a subthreshold swing (SS) of 144 mV/dec and a threshold voltage (V
T
) of 0.9 V, demonstrating superior resistance to stress-induced degradation. The TFTs treated with MWA displayed enhanced performance compared to the as-fabricated ones in bias stress stability. As a result, MWA showed significant potential for repairing defects through post-deposition annealing with a reduced thermal budget, thereby presenting a promising application for developing back-end-of-line (BEOL) compatible oxide semiconductor technology.
期刊介绍:
The IEEE Transactions on Nanotechnology is devoted to the publication of manuscripts of archival value in the general area of nanotechnology, which is rapidly emerging as one of the fastest growing and most promising new technological developments for the next generation and beyond.