Xiao Liu, Lihong Wu, Jun Liu, Haiming Lv, Pengpeng Mou, Shaohua Shi, Lei Yu, Gengping Wan, Guizhen Wang
{"title":"Dynamically frequency-tunable and environmentally stable microwave absorbers","authors":"Xiao Liu, Lihong Wu, Jun Liu, Haiming Lv, Pengpeng Mou, Shaohua Shi, Lei Yu, Gengping Wan, Guizhen Wang","doi":"10.1002/cey2.589","DOIUrl":null,"url":null,"abstract":"<p>The threat to information security from electromagnetic pollution has sparked widespread interest in the development of microwave absorption materials (MAMs). Although considerable progress has been made in high-performance MAMs, little attention was paid to their absorption frequency regulation to respond to variable input frequencies and their stability and durability to cope with complex environments. Here, a highly compressible polyimide-packaging carbon nanocoils/carbon foam (PI@CNCs/CF) fabricated by a facile vacuum impregnation method is reported to be used as a dynamically frequency-tunable and environmentally stable microwave absorber. PI@CNCs/CF exhibits good structural stability and mechanical properties, which allows precise absorption frequency tuning by simply changing its compression ratio. For the first time, the tunable effective absorption bandwidth can cover the whole test frequency band (2−18 GHz) with the broadest effective absorption bandwidth of 10.8 GHz and the minimum reflection loss of −60.5 dB. Moreover, PI@CNCs/CF possesses excellent heat insulation, infrared stealth, self-cleaning, flame retardant, and acid-alkali corrosion resistance, which endows it high reliability even under various harsh environments and repeated compression testing. The frequency-tunable mechanism is elucidated by combining experiment and simulation results, possibly guiding in designing dynamically frequency-tunable MAMs with good environmental stability in the future.</p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":null,"pages":null},"PeriodicalIF":19.5000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.589","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Energy","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cey2.589","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The threat to information security from electromagnetic pollution has sparked widespread interest in the development of microwave absorption materials (MAMs). Although considerable progress has been made in high-performance MAMs, little attention was paid to their absorption frequency regulation to respond to variable input frequencies and their stability and durability to cope with complex environments. Here, a highly compressible polyimide-packaging carbon nanocoils/carbon foam (PI@CNCs/CF) fabricated by a facile vacuum impregnation method is reported to be used as a dynamically frequency-tunable and environmentally stable microwave absorber. PI@CNCs/CF exhibits good structural stability and mechanical properties, which allows precise absorption frequency tuning by simply changing its compression ratio. For the first time, the tunable effective absorption bandwidth can cover the whole test frequency band (2−18 GHz) with the broadest effective absorption bandwidth of 10.8 GHz and the minimum reflection loss of −60.5 dB. Moreover, PI@CNCs/CF possesses excellent heat insulation, infrared stealth, self-cleaning, flame retardant, and acid-alkali corrosion resistance, which endows it high reliability even under various harsh environments and repeated compression testing. The frequency-tunable mechanism is elucidated by combining experiment and simulation results, possibly guiding in designing dynamically frequency-tunable MAMs with good environmental stability in the future.
期刊介绍:
Carbon Energy is an international journal that focuses on cutting-edge energy technology involving carbon utilization and carbon emission control. It provides a platform for researchers to communicate their findings and critical opinions and aims to bring together the communities of advanced material and energy. The journal covers a broad range of energy technologies, including energy storage, photocatalysis, electrocatalysis, photoelectrocatalysis, and thermocatalysis. It covers all forms of energy, from conventional electric and thermal energy to those that catalyze chemical and biological transformations. Additionally, Carbon Energy promotes new technologies for controlling carbon emissions and the green production of carbon materials. The journal welcomes innovative interdisciplinary research with wide impact. It is indexed in various databases, including Advanced Technologies & Aerospace Collection/Database, Biological Science Collection/Database, CAS, DOAJ, Environmental Science Collection/Database, Web of Science and Technology Collection.