Yanzhao Guo, John P. Hadden, Federico Gorrini, Giulio Coccia, Vibhav Bharadwaj, Vinaya Kumar Kavatamane, Mohammad Sahnawaz Alam, Roberta Ramponi, Paul E. Barclay, Andrea Chiappini, Maurizio Ferrari, Alexander Kubanek, Angelo Bifone, Shane M. Eaton, Anthony J. Bennett
{"title":"Laser-written waveguide-integrated coherent spins in diamond","authors":"Yanzhao Guo, John P. Hadden, Federico Gorrini, Giulio Coccia, Vibhav Bharadwaj, Vinaya Kumar Kavatamane, Mohammad Sahnawaz Alam, Roberta Ramponi, Paul E. Barclay, Andrea Chiappini, Maurizio Ferrari, Alexander Kubanek, Angelo Bifone, Shane M. Eaton, Anthony J. Bennett","doi":"10.1063/5.0209294","DOIUrl":null,"url":null,"abstract":"Quantum emitters, such as the negatively charged nitrogen-vacancy center in diamond, are attractive for quantum technologies, such as nano-sensing, quantum information processing, and as a non-classical light source. However, it is still challenging to position individual emitters in photonic structures while preserving the spin coherence properties of the defect. In this paper, we investigate single and ensemble waveguide-integrated nitrogen-vacancy centers in diamond fabricated by femtosecond laser writing followed by thermal annealing. Their spin coherence properties are systematically investigated and are shown to be comparable to native nitrogen-vacancy centers in diamond. This method paves the way for the fabrication of coherent spins integrated within photonic devices.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"15 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0209294","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum emitters, such as the negatively charged nitrogen-vacancy center in diamond, are attractive for quantum technologies, such as nano-sensing, quantum information processing, and as a non-classical light source. However, it is still challenging to position individual emitters in photonic structures while preserving the spin coherence properties of the defect. In this paper, we investigate single and ensemble waveguide-integrated nitrogen-vacancy centers in diamond fabricated by femtosecond laser writing followed by thermal annealing. Their spin coherence properties are systematically investigated and are shown to be comparable to native nitrogen-vacancy centers in diamond. This method paves the way for the fabrication of coherent spins integrated within photonic devices.
APL PhotonicsPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
10.30
自引率
3.60%
发文量
107
审稿时长
19 weeks
期刊介绍:
APL Photonics is the new dedicated home for open access multidisciplinary research from and for the photonics community. The journal publishes fundamental and applied results that significantly advance the knowledge in photonics across physics, chemistry, biology and materials science.