Giant asymmetric proximity-induced spin–orbit coupling in twisted graphene/SnTe heterostructure

IF 4.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY 2D Materials Pub Date : 2024-06-27 DOI:10.1088/2053-1583/ad59b4
Marko Milivojević, Martin Gmitra, Marcin Kurpas, Ivan Štich and Jaroslav Fabian
{"title":"Giant asymmetric proximity-induced spin–orbit coupling in twisted graphene/SnTe heterostructure","authors":"Marko Milivojević, Martin Gmitra, Marcin Kurpas, Ivan Štich and Jaroslav Fabian","doi":"10.1088/2053-1583/ad59b4","DOIUrl":null,"url":null,"abstract":"We analyze the spin–orbit coupling effects in a 3∘-degree twisted bilayer heterostructure made of graphene and an in-plane ferroelectric SnTe, with the goal of transferring the spin–orbit coupling from SnTe to graphene, via the proximity effect. Our results indicate that the point-symmetry breaking due to the incompatible mutual symmetry of the twisted monolayers and a strong hybridization has a massive impact on the spin splitting in graphene close to the Dirac point, with the spin splitting values greater than 20 meV. The band structure and spin expectation values of graphene close to the Dirac point can be described using a symmetry-free model, triggering different types of interaction with respect to the threefold symmetric graphene/transition-metal dichalcogenide heterostructure. We show that the strong hybridization of the Dirac cone’s right movers with the SnTe band gives rise to a large asymmetric spin splitting in the momentum space. Furthermore, we discover that the ferroelectricity-induced Rashba spin–orbit coupling in graphene is the dominant contribution to the overall Rashba field, with the effective in-plane electric field that is almost aligned with the (in-plane) ferroelectricity direction of the SnTe monolayer. We also predict an anisotropy of the in-plane spin relaxation rates. Our results demonstrate that the group-IV monochalcogenides MX (M = Sn, Ge; X = S, Se, Te) are a viable alternative to transition-metal dichalcogenides for inducing strong spin–orbit coupling in graphene.","PeriodicalId":6812,"journal":{"name":"2D Materials","volume":"3 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2D Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/2053-1583/ad59b4","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We analyze the spin–orbit coupling effects in a 3∘-degree twisted bilayer heterostructure made of graphene and an in-plane ferroelectric SnTe, with the goal of transferring the spin–orbit coupling from SnTe to graphene, via the proximity effect. Our results indicate that the point-symmetry breaking due to the incompatible mutual symmetry of the twisted monolayers and a strong hybridization has a massive impact on the spin splitting in graphene close to the Dirac point, with the spin splitting values greater than 20 meV. The band structure and spin expectation values of graphene close to the Dirac point can be described using a symmetry-free model, triggering different types of interaction with respect to the threefold symmetric graphene/transition-metal dichalcogenide heterostructure. We show that the strong hybridization of the Dirac cone’s right movers with the SnTe band gives rise to a large asymmetric spin splitting in the momentum space. Furthermore, we discover that the ferroelectricity-induced Rashba spin–orbit coupling in graphene is the dominant contribution to the overall Rashba field, with the effective in-plane electric field that is almost aligned with the (in-plane) ferroelectricity direction of the SnTe monolayer. We also predict an anisotropy of the in-plane spin relaxation rates. Our results demonstrate that the group-IV monochalcogenides MX (M = Sn, Ge; X = S, Se, Te) are a viable alternative to transition-metal dichalcogenides for inducing strong spin–orbit coupling in graphene.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
扭曲石墨烯/硒碲异质结构中巨大的非对称接近性诱导自旋轨道耦合
我们分析了由石墨烯和面内铁电体 SnTe 组成的 3∘ 度扭曲双层异质结构中的自旋轨道耦合效应,目的是通过邻近效应将自旋轨道耦合从 SnTe 转移到石墨烯。我们的研究结果表明,由于扭曲单层的互不兼容对称性和强杂化导致的点对称破缺对石墨烯中接近狄拉克点的自旋分裂产生了巨大影响,其自旋分裂值大于 20 meV。接近狄拉克点的石墨烯的带状结构和自旋期望值可以用无对称模型来描述,引发了与三重对称石墨烯/过渡金属二卤化物异质结构不同类型的相互作用。我们的研究表明,狄拉克锥的右移动器与锡碲带的强杂化导致了动量空间中的巨大非对称自旋分裂。此外,我们发现石墨烯中铁电性诱导的拉什巴自旋轨道耦合是整个拉什巴场的主要贡献,其有效面内电场几乎与锡碲单层的(面内)铁电性方向一致。我们还预测了面内自旋弛豫速率的各向异性。我们的研究结果表明,IV 族单质 MX(M = Sn、Ge;X = S、Se、Te)是诱导石墨烯中强自旋轨道耦合的过渡金属二卤化物的可行替代品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
2D Materials
2D Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
10.70
自引率
5.50%
发文量
138
审稿时长
1.5 months
期刊介绍: 2D Materials is a multidisciplinary, electronic-only journal devoted to publishing fundamental and applied research of the highest quality and impact covering all aspects of graphene and related two-dimensional materials.
期刊最新文献
Constructing three-dimensional GO/CNT@NMP aerogels towards primary lithium metal batteries Two-dimensional Janus MXTe (M = Hf, Zr; X = S, Se) piezoelectrocatalysts: a comprehensive investigation of its electronic, synthesis feasibility, electric polarization, and hydrogen evolution reaction activity The future of Xenes beyond graphene: challenges and perspective Soft-carbon-tuned hard carbon anode for ultrahigh-rate sodium storage Multiscale computational modeling techniques in study and design of 2D materials: recent advances, challenges, and opportunities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1