Synergistic efficiency of functionalized MWCNT stimulated ZnFe2O4/BiOBr heterostructure for enhanced removal of brilliant green and tetracycline hydrochloride

IF 5.9 3区 工程技术 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of Industrial and Engineering Chemistry Pub Date : 2024-06-22 DOI:10.1016/j.jiec.2024.06.030
Iftekhar Ahmad, Mohammad Saud Athar, Ziyaur Rasool, Mohammad Muneer
{"title":"Synergistic efficiency of functionalized MWCNT stimulated ZnFe2O4/BiOBr heterostructure for enhanced removal of brilliant green and tetracycline hydrochloride","authors":"Iftekhar Ahmad, Mohammad Saud Athar, Ziyaur Rasool, Mohammad Muneer","doi":"10.1016/j.jiec.2024.06.030","DOIUrl":null,"url":null,"abstract":"Water pollution due to organic pollutants poses a significant environmental threat, necessitating the development of effective materials for their complete removal. This study introduces a novel Z-scheme ZnFeO/MWCNT/BiOBr (ZMB) ternary composite to enhance the removal of brilliant green (BG) dye and tetracycline hydrochloride (TCH) antibiotic. The synthesized materials were comprehensively analyzed using a range of characterization techniques, including XRD, UV–Vis DRS, FTIR, SEM, TEM, EDX mapping, BET, and XPS. A series of ternary composite materials with varying percent mass ratios of ZnFeO was synthesized, of which the optimized 6ZMB composite (6 % mass ratio of ZnFeO) demonstrates the highest degradation rates for BG (99.9 %) and TCH (95.1 %) within 20 and 100 min, respectively. Trapping experiments confirmed that O• and •OH were the main reactive species responsible for the degradation of BG and TCH pollutants. The NBT transformation experiments and PL terephthalic acid probe method further confirmed the involvement of O• and •OH, respectively. Furthermore, the adsorption isotherm study showed that BG adsorption onto the 6ZMB ternary composite predominantly followed the Langmuir model, with a high regression coefficient (0.9963 and 0.9777 for linear and nonlinear fit, respectively), indicating effective and consistent adsorption through chemisorption.","PeriodicalId":363,"journal":{"name":"Journal of Industrial and Engineering Chemistry","volume":"197 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial and Engineering Chemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.jiec.2024.06.030","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Water pollution due to organic pollutants poses a significant environmental threat, necessitating the development of effective materials for their complete removal. This study introduces a novel Z-scheme ZnFeO/MWCNT/BiOBr (ZMB) ternary composite to enhance the removal of brilliant green (BG) dye and tetracycline hydrochloride (TCH) antibiotic. The synthesized materials were comprehensively analyzed using a range of characterization techniques, including XRD, UV–Vis DRS, FTIR, SEM, TEM, EDX mapping, BET, and XPS. A series of ternary composite materials with varying percent mass ratios of ZnFeO was synthesized, of which the optimized 6ZMB composite (6 % mass ratio of ZnFeO) demonstrates the highest degradation rates for BG (99.9 %) and TCH (95.1 %) within 20 and 100 min, respectively. Trapping experiments confirmed that O• and •OH were the main reactive species responsible for the degradation of BG and TCH pollutants. The NBT transformation experiments and PL terephthalic acid probe method further confirmed the involvement of O• and •OH, respectively. Furthermore, the adsorption isotherm study showed that BG adsorption onto the 6ZMB ternary composite predominantly followed the Langmuir model, with a high regression coefficient (0.9963 and 0.9777 for linear and nonlinear fit, respectively), indicating effective and consistent adsorption through chemisorption.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
功能化 MWCNT 激发 ZnFe2O4/BiOBr 异质结构的协同效率,增强对亮绿和盐酸四环素的去除效果
有机污染物造成的水污染对环境构成了严重威胁,因此需要开发有效的材料来彻底清除有机污染物。本研究介绍了一种新型 Z 型 ZnFeO/MWCNT/BiOBr (ZMB) 三元复合材料,以提高对亮绿(BG)染料和盐酸四环素(TCH)抗生素的去除率。利用一系列表征技术对合成材料进行了综合分析,包括 XRD、UV-Vis DRS、FTIR、SEM、TEM、EDX 图谱、BET 和 XPS。合成了一系列不同氧化锌质量比的三元复合材料,其中优化的 6ZMB 复合材料(氧化锌质量比为 6%)在 20 分钟和 100 分钟内对 BG(99.9%)和 TCH(95.1%)的降解率最高。捕集实验证实,O-和-OH 是降解 BG 和 TCH 污染物的主要反应物。NBT 转化实验和聚对苯二甲酸探针法分别进一步证实了 O- 和 -OH 的参与。此外,吸附等温线研究表明,BG 在 6ZMB 三元复合材料上的吸附主要遵循 Langmuir 模型,回归系数较高(线性拟合和非线性拟合的回归系数分别为 0.9963 和 0.9777),表明通过化学吸附进行的吸附有效且稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.40
自引率
6.60%
发文量
639
审稿时长
29 days
期刊介绍: Journal of Industrial and Engineering Chemistry is published monthly in English by the Korean Society of Industrial and Engineering Chemistry. JIEC brings together multidisciplinary interests in one journal and is to disseminate information on all aspects of research and development in industrial and engineering chemistry. Contributions in the form of research articles, short communications, notes and reviews are considered for publication. The editors welcome original contributions that have not been and are not to be published elsewhere. Instruction to authors and a manuscript submissions form are printed at the end of each issue. Bulk reprints of individual articles can be ordered. This publication is partially supported by Korea Research Foundation and the Korean Federation of Science and Technology Societies.
期刊最新文献
Editorial Board Mitochondria-targeted NIR molecular probe for detecting viscosity of gland damage and SO2 in actual samples Advanced Z-scheme H-g-C3N4/Bi2S3 nanocomposites: Boosting photocatalytic degradation of antibiotics under visible light exposure Sodium-doped LiFe0.5Mn0.5PO4 using sodium gluconate as both reducing agent and a doping source in Lithium-ion batteries Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1