Pub Date : 2024-09-29DOI: 10.1016/j.jiec.2024.09.046
Peng Lei , Ruifang Wang , Chuan Dong , Shaomin Shuang , Minglu Li
Glandular damage can be caused by various factors, including disease, trauma, or other abnormalities within the organism. The viscosity of the gland is one of the important indicators to measure the degree of damage. Sulfur dioxide (SO2) is widely used as an important food additive due to its preservative and bleaching properties, but its overuse has serious negative impacts on the environment, so it is urgent to develop a simple detection method. Herein, we designed and synthesized a mitochondria-targeted near-infrared (NIR) fluorescence probe (BDC) for the detection of viscosity and SO2. BDC consisted of a donor-π-acceptor (D-π-A) structure and extended double bonds bridging rotor, which enabled sensitive response to viscosity and intense fluorescence emission. The TICT (twisted intramolecular charge transfer) of BDC was inhibited with an increase in viscosity, accompanied by a significant enhancement of red fluorescence signal with emission wavelength beyond 800 nm. Notably, BDC was able to noninvasively and sensitively monitor the viscosity changes in the glands of non-obese diabetic (NOD) mice model. BDC was utilized for monitoring SO2 in food and environmental samples through Michael addition reactions, providing a straightforward tool for SO2 detection in food safety and environmental monitoring.
{"title":"Mitochondria-targeted NIR molecular probe for detecting viscosity of gland damage and SO2 in actual samples","authors":"Peng Lei , Ruifang Wang , Chuan Dong , Shaomin Shuang , Minglu Li","doi":"10.1016/j.jiec.2024.09.046","DOIUrl":"10.1016/j.jiec.2024.09.046","url":null,"abstract":"<div><div>Glandular damage can be caused by various factors, including disease, trauma, or other abnormalities within the organism. The viscosity of the gland is one of the important indicators to measure the degree of damage. Sulfur dioxide (SO<sub>2</sub>) is widely used as an important food additive due to its preservative and bleaching properties, but its overuse has serious negative impacts on the environment, so it is urgent to develop a simple detection method. Herein, we designed and synthesized a mitochondria-targeted near-infrared (NIR) fluorescence probe (BDC) for the detection of viscosity and SO<sub>2</sub>. BDC consisted of a donor-π-acceptor (D-π-A) structure and extended double bonds bridging rotor, which enabled sensitive response to viscosity and intense fluorescence emission. The TICT (twisted intramolecular charge transfer) of BDC was inhibited with an increase in viscosity, accompanied by a significant enhancement of red fluorescence signal with emission wavelength beyond 800 nm. Notably, BDC was able to noninvasively and sensitively monitor the viscosity changes in the glands of non-obese diabetic (NOD) mice model. BDC was utilized for monitoring SO<sub>2</sub> in food and environmental samples through Michael addition reactions, providing a straightforward tool for SO<sub>2</sub> detection in food safety and environmental monitoring.</div></div>","PeriodicalId":363,"journal":{"name":"Journal of Industrial and Engineering Chemistry","volume":"140 ","pages":"Pages 658-664"},"PeriodicalIF":5.9,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142560753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-26DOI: 10.1016/j.jiec.2024.09.045
Govinda Raj Muniyandi , Jeyapaul Ubagaram , Abinaya Srinivasan , Daisy Rani James , Nalandhiran Pugazhenthiran , Chandramohan Govindasamy , John Alphin Joseph , Aruljothy John Bosco , Shanmugam Mahalingam , Junghwan Kim
Abnormal concentrations of antibiotics found in aquatic environments have raised serious environmental concerns. For the efficient degradation of antibiotics, it is necessary to develop photocatalysts that react to visible light. In this work, calcination and hydrothermal methods were used to synthesize bare H-g-C3N4 and Bi2S3, respectively. Various analytic methods, such as XRD, XPS, FT-IR, HR-SEM, and HR-TEM, were utilized to verify the accomplished synthesis of the materials produced. The results of ultraviolet–visible diffuse reflectance spectroscopy (UV–DRS) showed that the synthesized nanocomposites exhibited a lower band gap than the bare materials and thus greater visible-light absorption. The degradation efficacy of the bare materials and hydrothermally synthesized nanocomposites over ciprofloxacin were investigated. A high degradation efficiency of 92 % was demonstrated for ciprofloxacin using the H-g-C3N4/Bi2S3 (5 %) nanocomposite. This remarkable efficiency underscores the potential of this nanocomposite in removing antibiotic pollutants from wastewater. In addition, the electron transfer dynamics amid the two materials (H-g-C3N4 and Bi2S3) within the heterojunction was elucidated. The findings provide valuable insights into the mechanisms underlying the enhanced photocatalytic activity of nanocomposites, paving the way for further optimization and development of advanced photocatalytic systems for environmental remediation.
{"title":"Advanced Z-scheme H-g-C3N4/Bi2S3 nanocomposites: Boosting photocatalytic degradation of antibiotics under visible light exposure","authors":"Govinda Raj Muniyandi , Jeyapaul Ubagaram , Abinaya Srinivasan , Daisy Rani James , Nalandhiran Pugazhenthiran , Chandramohan Govindasamy , John Alphin Joseph , Aruljothy John Bosco , Shanmugam Mahalingam , Junghwan Kim","doi":"10.1016/j.jiec.2024.09.045","DOIUrl":"10.1016/j.jiec.2024.09.045","url":null,"abstract":"<div><div>Abnormal concentrations of antibiotics found in aquatic environments have raised serious environmental concerns. For the efficient degradation of antibiotics, it is necessary to develop photocatalysts that react to visible light. In this work, calcination and hydrothermal methods were used to synthesize bare H-g-C<sub>3</sub>N<sub>4</sub> and Bi<sub>2</sub>S<sub>3</sub>, respectively. Various analytic methods, such as XRD, XPS, FT-IR, HR-SEM, and HR-TEM, were utilized to verify the accomplished synthesis of the materials produced. The results of ultraviolet–visible diffuse reflectance spectroscopy (UV–DRS) showed that the synthesized nanocomposites exhibited a lower band gap than the bare materials and thus greater visible-light absorption. The degradation efficacy of the bare materials and hydrothermally synthesized nanocomposites over ciprofloxacin were investigated. A high degradation efficiency of 92 % was demonstrated for ciprofloxacin using the H-g-C<sub>3</sub>N<sub>4</sub>/Bi<sub>2</sub>S<sub>3</sub> (5 %) nanocomposite. This remarkable efficiency underscores the potential of this nanocomposite in removing antibiotic pollutants from wastewater. In addition, the electron transfer dynamics amid the two materials (H-g-C<sub>3</sub>N<sub>4</sub> and Bi<sub>2</sub>S<sub>3</sub>) within the heterojunction was elucidated. The findings provide valuable insights into the mechanisms underlying the enhanced photocatalytic activity of nanocomposites, paving the way for further optimization and development of advanced photocatalytic systems for environmental remediation.</div></div>","PeriodicalId":363,"journal":{"name":"Journal of Industrial and Engineering Chemistry","volume":"140 ","pages":"Pages 647-657"},"PeriodicalIF":5.9,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142560752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-27DOI: 10.1016/j.jiec.2024.08.038
Meriem Kemel
This study evaluates the corrosion inhibition performance of the n-butanol (n-BuOH) fraction derived from Cynara syriaca on mild steel in acidic environments. The n-BuOH fraction achieved up to 94 % inhibition at 500 ppm, as assessed through gravimetric analysis, potentiodynamic polarization (PDP), and electrochemical impedance spectroscopy (EIS). Key phenolic compounds, including kaempferol, naringenin, myricetin, chlorogenic acid, and quercetin, were identified by UPLC-MS/MS. These compounds form stable flavonoid-metal complexes, as confirmed by UV–Vis spectroscopy. FT-IR and SEM-EDS analyses revealed the formation of protective coatings and interactions with the steel surface. Polarization curves indicate that the n-BuOH fraction acts as a mixed-type inhibitor, predominantly affecting the anodic reaction. The inhibition efficiency decreased from 94.14 % to 73.43 % with increasing temperatures. Thermodynamic analysis showed an increase in activation energy (Ea = 58.20 kJ/mol) and a positive ΔH value of 56.17 kJ/mol, which can be attributed to the increased thickness of the double layer, enhancing the activation energy of the corrosion process. A Gibbs free energy (ΔG0ads) value of −25.48 kJ/mol confirms that the adsorption process is spontaneous and involves both physisorption and chemisorption. pKa analysis identified specific adsorption sites. This research underscores the potential of the n-BuOH fraction as a novel, eco-friendly corrosion inhibitor, offering valuable insights for sustainable corrosion control strategies.
{"title":"Eco-friendly corrosion inhibition of steel using phenolic compounds from Cynara syriaca","authors":"Meriem Kemel","doi":"10.1016/j.jiec.2024.08.038","DOIUrl":"10.1016/j.jiec.2024.08.038","url":null,"abstract":"<div><div>This study evaluates the corrosion inhibition performance of the <em>n</em>-butanol (<em>n</em>-BuOH) fraction derived from <em>Cynara syriaca</em> on mild steel in acidic environments. The <em>n</em>-BuOH fraction achieved up to 94 % inhibition at 500 ppm, as assessed through gravimetric analysis, potentiodynamic polarization (PDP), and electrochemical impedance spectroscopy (EIS). Key phenolic compounds, including kaempferol, naringenin, myricetin, chlorogenic acid, and quercetin, were identified by UPLC-MS/MS. These compounds form stable flavonoid-metal complexes, as confirmed by UV–Vis spectroscopy. FT-IR and SEM-EDS analyses revealed the formation of protective coatings and interactions with the steel surface. Polarization curves indicate that the <em>n</em>-BuOH fraction acts as a mixed-type inhibitor, predominantly affecting the anodic reaction. The inhibition efficiency decreased from 94.14 % to 73.43 % with increasing temperatures. Thermodynamic analysis showed an increase in activation energy (<em>E</em><sub>a</sub> = 58.20 kJ/mol) and a positive Δ<em>H</em> value of 56.17 kJ/mol, which can be attributed to the increased thickness of the double layer, enhancing the activation energy of the corrosion process. A Gibbs free energy (Δ<em>G</em><sup>0</sup><sub>ads</sub>) value of −25.48 kJ/mol confirms that the adsorption process is spontaneous and involves both physisorption and chemisorption. pKa analysis identified specific adsorption sites. This research underscores the potential of the <em>n</em>-BuOH fraction as a novel, eco-friendly corrosion inhibitor, offering valuable insights for sustainable corrosion control strategies.</div></div>","PeriodicalId":363,"journal":{"name":"Journal of Industrial and Engineering Chemistry","volume":"140 ","pages":"Pages 617-630"},"PeriodicalIF":5.9,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142211206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-26DOI: 10.1016/j.jiec.2024.08.042
W. Ettahiri , A. El Moutaouakil Ala Allah , J. Lazrak , E.H. Safir , K.K. Yadav , B. Hammouti , A.J. Obaidullah , Z. Rais , Y. Ramli , M. Taleb
This study investigates the corrosion inhibition properties of two newly synthesized namely (E)-2-(2-benzylidenehydrazineyl)-5,5-diphenyl-3,5-dihydro-4H-imidazol-4-one denoted Ph-DDI and (E)-2-(2-(4-methylbenzylidene)hydrazineyl)-5,5-diphenyl-3,5-dihydro-4H-imidazol-4-one denoted CH3Ph-DDI, on mild steel (MS) in a 1 M HCl solution. These compounds demonstrated high inhibition efficiencies of 98.3 % and 98.7 %, respectively. Structural characterization was performed using FT-IR, 1H NMR, 13C NMR, and HRMS-ESI. Theoretical evaluations indicated high reactivity and potent inhibition capacity. Electrochemical tests confirmed a concentration-dependent inhibition effectiveness up to 328 K. Adsorption studies suggested that the compounds displace water molecules to form an adsorbed protective layer. Microscopy analysis provided insights into the corrosion inhibition mechanisms, confirming the formation of protective layers and iron/inhibitor complexes. Further molecular structure analysis using Monte Carlo (MC) simulations and density functional theory (DFT) calculations elucidated the structural features contributing to the compounds’ effective corrosion inhibition properties.
{"title":"Synthesis, characterization, theoretical, and experimental evaluation of novel imidazolone − based compounds as eco-friendly corrosion inhibitors for mild steel","authors":"W. Ettahiri , A. El Moutaouakil Ala Allah , J. Lazrak , E.H. Safir , K.K. Yadav , B. Hammouti , A.J. Obaidullah , Z. Rais , Y. Ramli , M. Taleb","doi":"10.1016/j.jiec.2024.08.042","DOIUrl":"10.1016/j.jiec.2024.08.042","url":null,"abstract":"<div><div>This study investigates the corrosion inhibition properties of two newly synthesized namely (E)-2-(2-benzylidenehydrazineyl)-5,5-diphenyl-3,5-dihydro-<em>4H</em>-imidazol-4-one denoted <strong>Ph-DDI</strong> and (E)-2-(2-(4-methylbenzylidene)hydrazineyl)-5,5-diphenyl-3,5-dihydro-<em>4H</em>-imidazol-4-one denoted <strong>CH<sub>3</sub>Ph-DDI</strong>, on mild steel (MS) in a 1 M HCl solution. These compounds demonstrated high inhibition efficiencies of 98.3 % and 98.7 %, respectively. Structural characterization was performed using FT-IR, <sup>1</sup>H NMR, <sup>13</sup>C NMR, and HRMS-ESI. Theoretical evaluations indicated high reactivity and potent inhibition capacity. Electrochemical tests confirmed a concentration-dependent inhibition effectiveness up to 328 K. Adsorption studies suggested that the compounds displace water molecules to form an adsorbed protective layer. Microscopy analysis provided insights into the corrosion inhibition mechanisms, confirming the formation of protective layers and iron/inhibitor complexes. Further molecular structure analysis using Monte Carlo (MC) simulations and density functional theory (DFT) calculations elucidated the structural features contributing to the compounds’ effective corrosion inhibition properties.</div></div>","PeriodicalId":363,"journal":{"name":"Journal of Industrial and Engineering Chemistry","volume":"140 ","pages":"Pages 631-646"},"PeriodicalIF":5.9,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142227914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-10DOI: 10.1016/j.jiec.2024.08.002
Abdelfattah Amari , Hakim S. Sultan Aljibori , Zaina Algarni , Noureddine Elboughdiri , M.A. Diab , Kwang-Hyun Baek , Ibrahim Mahariq
The degradation of pollutants and reduction of CO2 to hydrocarbon fuels using photocatalysis is a potential approach to reducing CO2 emissions and decreasing environmental contamination. This study introduces an innovative S-scheme photocatalyst (Fe2O3/Bi2O3/g-C3N4) synthesized through simple methods for the first time. The structural, morphological, and optical properties of the synthesized photocatalysts were comprehensively characterized using XRD, XPS, FTIR, SEM, TEM, HR-TEM, BET, UV–vis DRS, PL, ESR, and mott-Schottky analyses, respectively. The visible light photodegradation of tetracycline (TC) antibiotic and CO2 conversion were carried out in order to evaluate the photocatalytic performance of these synthesized materials. Using the RSM-CCD approach, the influence of key variables on TC degradation were optimized. The results indicated that the optimized photocatalyst (45-FeBiC) exhibited higher photocatalytic performance (99.87 %) compared to other samples via photogenerated •O2−, and •OH. Additionally, four cycle studies verified that the 45-FeBiC nanocomposite had adequate photostability. After 6 h of visible light illumination, the 45-FeBiC catalyst generated 33.84 μmol/g of CO and maintained 96.2 % of its initial photocatalytic activity after 30 h of reaction. The enhanced photocatalytic efficiency of the 45-FeBiC nanocomposite is attributed to the photosensitization effect of 3 wt%-Fe2O3/Bi2O3 on g-C3N4 within the S-scheme photocatalytic framework.
{"title":"A novel S-scheme photocatalyst Fe2O3/Bi2O3/g-C3N4 with enhanced visible-light photocatalytic performance for antibiotic degradation and CO2 reduction: RSM-based optimization","authors":"Abdelfattah Amari , Hakim S. Sultan Aljibori , Zaina Algarni , Noureddine Elboughdiri , M.A. Diab , Kwang-Hyun Baek , Ibrahim Mahariq","doi":"10.1016/j.jiec.2024.08.002","DOIUrl":"10.1016/j.jiec.2024.08.002","url":null,"abstract":"<div><div>The degradation of pollutants and reduction of CO<sub>2</sub> to hydrocarbon fuels using photocatalysis is a potential approach to reducing CO<sub>2</sub> emissions and decreasing environmental contamination. This study introduces an innovative S-scheme photocatalyst (Fe<sub>2</sub>O<sub>3</sub>/Bi<sub>2</sub>O<sub>3</sub>/g-C<sub>3</sub>N<sub>4</sub>) synthesized through simple methods for the first time. The structural, morphological, and optical properties of the synthesized photocatalysts were comprehensively characterized using XRD, XPS, FTIR, SEM, TEM, HR-TEM, BET, UV–vis DRS, PL, ESR, and mott-Schottky analyses, respectively. The visible light photodegradation of tetracycline (TC) antibiotic and CO<sub>2</sub> conversion were carried out in order to evaluate the photocatalytic performance of these synthesized materials. Using the RSM-CCD approach, the influence of key variables on TC degradation were optimized. The results indicated that the optimized photocatalyst (45-FeBiC) exhibited higher photocatalytic performance (99.87 %) compared to other samples via photogenerated •O<sub>2</sub><sup>−</sup>, and •OH. Additionally, four cycle studies verified that the 45-FeBiC nanocomposite had adequate photostability. After 6 h of visible light illumination, the 45-FeBiC catalyst generated 33.84 μmol/g of CO and maintained 96.2 % of its initial photocatalytic activity after 30 h of reaction. The enhanced photocatalytic efficiency of the 45-FeBiC nanocomposite is attributed to the photosensitization effect of 3 wt%-Fe<sub>2</sub>O<sub>3</sub>/Bi<sub>2</sub>O<sub>3</sub> on g-C<sub>3</sub>N<sub>4</sub> within the S-scheme photocatalytic framework.</div></div>","PeriodicalId":363,"journal":{"name":"Journal of Industrial and Engineering Chemistry","volume":"140 ","pages":"Pages 599-616"},"PeriodicalIF":5.9,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142211298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-08DOI: 10.1016/j.jiec.2024.07.048
Nguyen Huu Hieu , Phan Minh Tu , Nguyen Hoang Kim Duyen , Cao Vu Lam , Dang Ngoc Chau Vy , Ta Dang Khoa , Nguyen Truong Son , Vo Nguyen Dai Viet , Pham Trong Liem Chau
{"title":"Corrigendum to “Zn-doped aerogel for Ni2+ adsorption (Zn-A-Ni) and reuse of Zn-A-Ni to create Zn, Ni-co-doped carbon aerogel for applications in adsorption and energy storage” [J. Ind. Eng. Chem. (2024) 7534]","authors":"Nguyen Huu Hieu , Phan Minh Tu , Nguyen Hoang Kim Duyen , Cao Vu Lam , Dang Ngoc Chau Vy , Ta Dang Khoa , Nguyen Truong Son , Vo Nguyen Dai Viet , Pham Trong Liem Chau","doi":"10.1016/j.jiec.2024.07.048","DOIUrl":"10.1016/j.jiec.2024.07.048","url":null,"abstract":"","PeriodicalId":363,"journal":{"name":"Journal of Industrial and Engineering Chemistry","volume":"139 ","pages":"Page 630"},"PeriodicalIF":5.9,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1226086X24004933/pdfft?md5=a49c31040455a4954cdadfadf60282ff&pid=1-s2.0-S1226086X24004933-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142163045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-17DOI: 10.1016/j.jiec.2024.07.034
J.S. Park , D.W. Kim , J.B. Kwon , S.H. Park , K.Y. Chung
This study was investigated to optimize growth conditions of native microalgae (Coelastrella sp. CORE-3) from wastewater, evaluate the removal of Cu2+, Zn2+, Cd2+ and Ni2+ and compare both isolated microalgae and Ankistrodesmus bibraianus, and describe their sorption mechanisms on the cell surface. The effects of the pH, light: dark cycle and temperature on the growth of the isolated Coelastrella sp. CORE-3 was optimized. The optimal L:D cycle, temperature, and pH conditions were 14:10 hr, 25℃, pH 7. The growth of isolated microalgae, Coelastrella sp. CORE-3. was compared with A. bibraianus. The removal efficiency of heavy metals by Coelastrella sp. CORE-3 and A. bibraianus were found as follows, respectively: (live cell) Zn2+ > Cd2+ > Cu2+ > Ni2+, (dead cell) Cu2+ > Cd2+ > Zn2+ > Ni2+. SEM analysis indicated that more cell surface deformation occurred in A. bibraianus compared to Coelastrella sp. after exposure to heavy metals. This result suggests that Coelastrella sp. CORE-3 has more resistant to heavy metal toxicity. In addition, based on the FT-IR analysis, the live cells of Coelastrella sp. CORE-3 and A. bibraianus showed the interactions of heavy metals with the functional groups: alcohol, alkane, amide, amine on their cell surfaces.
{"title":"Optimal growth conditions and heavy metal removal of Coelastrella sp. CORE-3 isolated from wastewater","authors":"J.S. Park , D.W. Kim , J.B. Kwon , S.H. Park , K.Y. Chung","doi":"10.1016/j.jiec.2024.07.034","DOIUrl":"10.1016/j.jiec.2024.07.034","url":null,"abstract":"<div><div>This study was investigated to optimize growth conditions of native microalgae (<em>Coelastrella</em> sp. CORE-3) from wastewater, evaluate the removal of Cu<sup>2+</sup>, Zn<sup>2+</sup>, Cd<sup>2+</sup> and Ni<sup>2+</sup> and compare both isolated microalgae and <em>Ankistrodesmus bibraianus</em>, and describe their sorption mechanisms on the cell surface. The effects of the pH, light: dark cycle and temperature on the growth of the isolated <em>Coelastrella</em> sp. CORE-3 was optimized. The optimal L:D cycle, temperature, and pH conditions were 14:10 hr, 25℃, pH 7. The growth of isolated microalgae, <em>Coelastrella</em> sp. CORE-3. was compared with <em>A. bibraianus.</em> The removal efficiency of heavy metals by <em>Coelastrella</em> sp. CORE-3 and <em>A. bibraianus</em> were found as follows, respectively: (live cell) Zn<sup>2+</sup> > Cd<sup>2+</sup> > Cu<sup>2+</sup> > Ni<sup>2+</sup>, (dead cell) Cu<sup>2+</sup> > Cd<sup>2+</sup> > Zn<sup>2+</sup> > Ni<sup>2+</sup>. SEM analysis indicated that more cell surface deformation occurred in <em>A. bibraianus</em> compared to <em>Coelastrella</em> sp. after exposure to heavy metals. This result suggests that <em>Coelastrella</em> sp. CORE-3 has more resistant to heavy metal toxicity. In addition, based on the FT-IR analysis, the live cells of <em>Coelastrella</em> sp. CORE-3 and <em>A. bibraianus</em> showed the interactions of heavy metals with the functional groups: alcohol, alkane, amide, amine on their cell surfaces.</div></div>","PeriodicalId":363,"journal":{"name":"Journal of Industrial and Engineering Chemistry","volume":"140 ","pages":"Pages 589-598"},"PeriodicalIF":5.9,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141844650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-25DOI: 10.1016/j.jiec.2024.06.031
Mesophase pitch carbon fiber has shown remarkable prospects in specialty carbon material. The mechanical properties of mesophase pitch carbon fiber (CF) cannot be precisely controlled because of the difficulty of forming process regulation. The early forming of carbon fiber (precursor fiber (PF) and pre-oxidation fiber (OF)) is difficult to regulate, such as carbon microcrystal and carbon layer texture, while cause the irreversible growth of carbonization process. Herein, a synergy strategy of spinning drawing and preoxidation stretching is developed to optimize orientation structure, eliminate morphology defects and improve mechanical properties. A synergistic effect of superior spinning drawing and suitable preoxidation stretching is beneficial to adjust the more order rearrangement of carbon microcrystals. The tensile strength of carbon fibers with spinning drawing and preoxidation stretching is increased by 1.7 times, and their defects are reduced by 40%. The results show that the excellent mechanical property of carbon fiber is contributed by the extrusion stress caused by high oxidation crosslinked surface layer under tension, and the micro-flow and rearrangement of carbon microcrystals induced by extrusion stress. A mechanical strengthening mechanism of carbon fiber is proposed, which provides guidance for high-performance mesophase pitch carbon fiber.
{"title":"Synergistic effect of spinning drawing and preoxidation stretching on the orientation structure of mesophase pitch carbon fibers","authors":"","doi":"10.1016/j.jiec.2024.06.031","DOIUrl":"10.1016/j.jiec.2024.06.031","url":null,"abstract":"<div><p>Mesophase pitch carbon fiber has shown remarkable prospects in specialty carbon material. The mechanical properties of mesophase pitch carbon fiber (CF) cannot be precisely controlled because of the difficulty of forming process regulation. The early forming of carbon fiber (precursor fiber (PF) and pre-oxidation fiber (OF)) is difficult to regulate, such as carbon microcrystal<span><span><span> and carbon layer texture, while cause the irreversible growth of </span>carbonization process. Herein, a synergy strategy of spinning drawing and preoxidation stretching is developed to optimize orientation structure, eliminate morphology defects and improve mechanical properties. A </span>synergistic effect<span> of superior spinning drawing and suitable preoxidation stretching is beneficial to adjust the more order rearrangement of carbon microcrystals. The tensile strength<span> of carbon fibers with spinning drawing and preoxidation stretching is increased by 1.7 times, and their defects are reduced by 40%. The results show that the excellent mechanical property of carbon fiber is contributed by the extrusion stress caused by high oxidation<span> crosslinked surface layer under tension, and the micro-flow and rearrangement of carbon microcrystals induced by extrusion stress. A mechanical strengthening mechanism of carbon fiber is proposed, which provides guidance for high-performance mesophase pitch carbon fiber.</span></span></span></span></p></div>","PeriodicalId":363,"journal":{"name":"Journal of Industrial and Engineering Chemistry","volume":"139 ","pages":"Pages 620-629"},"PeriodicalIF":5.9,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141568974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-22DOI: 10.1016/j.jiec.2024.06.006
We developed a novel MXene/polymer hybrid material for enhanced photodegradation of multiple organic dyes. Specifically, uniform-sized PMMA microspheres and multilayer Ti3C2Tx MXene were integrated through a facile solution process to form PMMA/Ti3C2Tx composites. The hybridization of the two components significantly increased the specific surface area and pore volume. An optimized composite showed high photocatalytic activity, demonstrating 93 and 98 % degradation efficiencies for orange G (OG) and rhodamine B (RhB) in 60 min of light illumination. Furthermore, the composite revealed good recyclability without a significant performance drop even after four cycles. Moreover, the composite retained its high photocatalytic activity at various conditions, including elevated temperatures, a wide range of pH levels, and in tap water. These results manifest that the PMMA/Ti3C2Tx hetero-photocatalyst is well suited for use in wastewater treatment and environmental cleanup.
{"title":"PMMA microspheres-embedded Ti3C2Tx MXene heterophotocatalysts synergistically working for multiple dye degradation","authors":"","doi":"10.1016/j.jiec.2024.06.006","DOIUrl":"10.1016/j.jiec.2024.06.006","url":null,"abstract":"<div><div><span><span>We developed a novel MXene/polymer hybrid material for enhanced </span>photodegradation<span><span> of multiple organic dyes. Specifically, uniform-sized PMMA<span> microspheres and </span></span>multilayer Ti</span></span><sub>3</sub>C<sub>2</sub>T<em><sub>x</sub></em><span> MXene were integrated through a facile solution process to form PMMA/Ti</span><sub>3</sub>C<sub>2</sub>T<em><sub>x</sub></em><span><span><span><span><span><span> composites. The hybridization of the two components significantly increased the specific surface area and </span>pore volume. An optimized composite showed high </span>photocatalytic activity, demonstrating 93 and 98 % degradation efficiencies for </span>orange G (OG) and </span>rhodamine B (RhB) in 60 min of light illumination. Furthermore, the composite revealed good </span>recyclability<span><span> without a significant performance drop even after four cycles. Moreover, the composite retained its high photocatalytic activity at various conditions, including elevated temperatures, a wide range of pH levels, and in </span>tap water. These results manifest that the PMMA/Ti</span></span><sub>3</sub>C<sub>2</sub>T<em><sub>x</sub></em><span><span> hetero-photocatalyst is well suited for use in wastewater treatment and </span>environmental cleanup.</span></div></div>","PeriodicalId":363,"journal":{"name":"Journal of Industrial and Engineering Chemistry","volume":"140 ","pages":"Pages 490-500"},"PeriodicalIF":5.9,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141518133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-14DOI: 10.1016/j.jiec.2024.06.007
In today’s increasingly serious problem of emerging contaminants (ECs), sulfate radical-based advanced oxidation processes (SR-AOPs) have become one of the options for deep wastewater purification and water remediation. The heterogeneous activation of persulfate without external energy is of great significance. However, how to choose a suitable persulfate activation method to meet the practical requirements is an urgent problem to be solved. Perovskite-based catalysts have been widely used in SR-AOPs because of their advantages such as low cost, high catalytic activity, variety and tunable structures. In this paper, the history, structure and preparation method of perovskite are introduced. Next is the design of perovskite catalyst, include the selection of elements, modification methods and preparation of perovskite-based composites. The synergistic effect of generating oxygen vacancies (OVs) through cation substitution and utilizing bimetallic oxides is a common method in the field of perovskite-mediated SR-AOPs. Finally, the shortcomings and future development direction of this field are discussed. This work helps researchers and practitioners to better select and design perovskite catalysts and perovskite-based composites.
{"title":"A review on the application of perovskite catalysts for sulfate radical-based advanced oxidation processes","authors":"","doi":"10.1016/j.jiec.2024.06.007","DOIUrl":"10.1016/j.jiec.2024.06.007","url":null,"abstract":"<div><div><span>In today’s increasingly serious problem of emerging contaminants (ECs), sulfate radical-based advanced oxidation processes (SR-AOPs) have become one of the options for deep wastewater purification and water remediation. The heterogeneous activation of persulfate without external energy is of great significance. However, how to choose a suitable </span>persulfate activation<span><span> method to meet the practical requirements is an urgent problem to be solved. Perovskite-based catalysts have been widely used in SR-AOPs because of their advantages such as low cost, high catalytic activity, variety and tunable structures. In this paper, the history, structure and preparation method of perovskite are introduced. Next is the design of perovskite catalyst, include the selection of elements, modification methods and preparation of perovskite-based composites. The synergistic effect of generating oxygen vacancies (OVs) through cation substitution and utilizing bimetallic </span>oxides is a common method in the field of perovskite-mediated SR-AOPs. Finally, the shortcomings and future development direction of this field are discussed. This work helps researchers and practitioners to better select and design perovskite catalysts and perovskite-based composites.</span></div></div>","PeriodicalId":363,"journal":{"name":"Journal of Industrial and Engineering Chemistry","volume":"140 ","pages":"Pages 146-168"},"PeriodicalIF":5.9,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141400107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}