Demonstration of Microwave Resonators and Double Quantum Dots on Optimized Reverse-Graded Ge/SiGe Heterostructures

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-06-26 DOI:10.1021/acsaelm.4c00654
Arianna Nigro, Eric Jutzi, Fabian Oppliger, Franco De Palma, Christian Olsen, Alicia Ruiz-Caridad, Gerard Gadea, Pasquale Scarlino, Ilaria Zardo, Andrea Hofmann
{"title":"Demonstration of Microwave Resonators and Double Quantum Dots on Optimized Reverse-Graded Ge/SiGe Heterostructures","authors":"Arianna Nigro, Eric Jutzi, Fabian Oppliger, Franco De Palma, Christian Olsen, Alicia Ruiz-Caridad, Gerard Gadea, Pasquale Scarlino, Ilaria Zardo, Andrea Hofmann","doi":"10.1021/acsaelm.4c00654","DOIUrl":null,"url":null,"abstract":"One of the most promising platforms for the realization of spin-based quantum computing are planar germanium quantum wells embedded between silicon–germanium barriers. To achieve comparably thin stacks with little surface roughness, this type of heterostructure can be grown using the so-called reverse linear grading approach, where the growth starts with a virtual germanium substrate followed by a graded silicon–germanium alloy with an increasing silicon content. However, the compatibility of such reverse-graded heterostructures with superconducting microwave resonators has not yet been demonstrated. Here, we report on the successful realization of well-controlled double quantum dots and high-quality coplanar waveguide resonators on the same reverse-graded Ge/SiGe heterostructure.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsaelm.4c00654","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

One of the most promising platforms for the realization of spin-based quantum computing are planar germanium quantum wells embedded between silicon–germanium barriers. To achieve comparably thin stacks with little surface roughness, this type of heterostructure can be grown using the so-called reverse linear grading approach, where the growth starts with a virtual germanium substrate followed by a graded silicon–germanium alloy with an increasing silicon content. However, the compatibility of such reverse-graded heterostructures with superconducting microwave resonators has not yet been demonstrated. Here, we report on the successful realization of well-controlled double quantum dots and high-quality coplanar waveguide resonators on the same reverse-graded Ge/SiGe heterostructure.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在优化的反梯度 Ge/SiGe 异质结构上展示微波谐振器和双量子点
最有希望实现自旋量子计算的平台之一是嵌入硅锗势垒之间的平面锗量子阱。为了获得表面粗糙度较小的相当薄的叠层,可以采用所谓的反向线性分级方法来生长这种异质结构,即先生长虚拟锗基底,然后再生长硅含量不断增加的分级硅锗合金。然而,这种反向分级异质结构与超导微波谐振器的兼容性尚未得到证实。在此,我们报告了在同一反向分级锗/硅锗异质结构上成功实现控制良好的双量子点和高质量共面波导谐振器的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Issue Publication Information Issue Editorial Masthead Room Temperature Real Air Highly Sensitive and Selective Detection of Ethanol and Ammonia Molecules Using Tin Nanoparticle-Functionalized Graphene Sensors Two-Dimensional Magnetic Semiconductors by Substitutional Doping of Monolayer PtS2 Green Durable Biomechanical Sensor Based on a Cation-Enhanced Hydrogel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1