Mengjie Dai, Wenchao Xing, Yinfeng Zhang, Lun Zhang, Pujun Niu, Ziying Wen, Shengquan Shan, Mei Lyu, Jun Zhu
{"title":"Modified SnO2 Electron Transport Layer by One‐Step Doping with Histidine in Perovskite Solar Cells","authors":"Mengjie Dai, Wenchao Xing, Yinfeng Zhang, Lun Zhang, Pujun Niu, Ziying Wen, Shengquan Shan, Mei Lyu, Jun Zhu","doi":"10.1002/pssa.202400227","DOIUrl":null,"url":null,"abstract":"Tin dioxide (SnO<jats:sub>2</jats:sub>), one of the best electron transport layer materials for perovskite solar cells (PSCs), has high electrical conductivity and low photocatalytic activity. However, the defects in its inside and surface result in nonradiative recombination at the SnO<jats:sub>2</jats:sub>/perovskite interface. Complex and time‐consuming passivation methods are not conducive to the commercialization of PSCs, and simple passivation strategies should be used to improve the photovoltaic performance of the devices. Herein, a facile and efficient method is proposed to simultaneously passivate the inside and surface defects by adding histidine (HIS) to SnO<jats:sub>2</jats:sub> colloidal solution. This one‐step doping strategy also modulates carrier dynamics at the SnO<jats:sub>2</jats:sub>/perovskite interface. HIS reduces suspended hydroxyl groups, oxygen vacancies, and uncoordinated Sn<jats:sup>4+</jats:sup> defects on the surface of SnO<jats:sub>2</jats:sub>, as well as uncoordinated Pb<jats:sup>2+</jats:sup> and halogen vacancy defects at the buried interface of perovskite. Surprisingly, HIS can prevent perovskite from decomposition to form PbI<jats:sub>2</jats:sub>, which further decomposes to photoactive metallic Pb<jats:sup>0</jats:sup> and I, causing ion migration in PSC. As a result, the PSC efficiency has significantly improved 23.11% after HIS doping. The efficiency of unencapsulated device with HIS is 94% of the primary efficiency after storage in relative humidity = 70 ± 5% for 1000 h.","PeriodicalId":20074,"journal":{"name":"Physica Status Solidi A-applications and Materials Science","volume":"151 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Status Solidi A-applications and Materials Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/pssa.202400227","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Tin dioxide (SnO2), one of the best electron transport layer materials for perovskite solar cells (PSCs), has high electrical conductivity and low photocatalytic activity. However, the defects in its inside and surface result in nonradiative recombination at the SnO2/perovskite interface. Complex and time‐consuming passivation methods are not conducive to the commercialization of PSCs, and simple passivation strategies should be used to improve the photovoltaic performance of the devices. Herein, a facile and efficient method is proposed to simultaneously passivate the inside and surface defects by adding histidine (HIS) to SnO2 colloidal solution. This one‐step doping strategy also modulates carrier dynamics at the SnO2/perovskite interface. HIS reduces suspended hydroxyl groups, oxygen vacancies, and uncoordinated Sn4+ defects on the surface of SnO2, as well as uncoordinated Pb2+ and halogen vacancy defects at the buried interface of perovskite. Surprisingly, HIS can prevent perovskite from decomposition to form PbI2, which further decomposes to photoactive metallic Pb0 and I, causing ion migration in PSC. As a result, the PSC efficiency has significantly improved 23.11% after HIS doping. The efficiency of unencapsulated device with HIS is 94% of the primary efficiency after storage in relative humidity = 70 ± 5% for 1000 h.
期刊介绍:
The physica status solidi (pss) journal group is devoted to the thorough peer review and the rapid publication of new and important results in all fields of solid state and materials physics, from basic science to applications and devices. Among the largest and most established international publications, the pss journals publish reviews, letters and original articles, as regular content as well as in special issues and topical sections.