Enhanced Oxygen Evolution Reaction Performance in Co–Fe Hydroxides through Boron Doping

IF 1.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Physica Status Solidi A-applications and Materials Science Pub Date : 2024-07-02 DOI:10.1002/pssa.202400481
Peijia Liu, Liang Shan, Zeyi Lu, Min Liu
{"title":"Enhanced Oxygen Evolution Reaction Performance in Co–Fe Hydroxides through Boron Doping","authors":"Peijia Liu, Liang Shan, Zeyi Lu, Min Liu","doi":"10.1002/pssa.202400481","DOIUrl":null,"url":null,"abstract":"Among hydrogen production methods, water electrolysis stands out, but its efficiency is hampered by the substantial energy barrier of the oxygen evolution reaction (OER). To address this, incorporating electron‐deficient boron (B) into Co–Fe hydroxide (CoFeO<jats:sub><jats:italic>x</jats:italic></jats:sub>H<jats:sub><jats:italic>y</jats:italic></jats:sub>) promotes higher oxidation states of involved metals, greatly enhancing OER activity and charge transfer capabilities. Herein, the synthesis of a range of amorphous CoFeB nanoparticles with varying Fe to (Co+Fe) atomic ratios achieved through a simple chemical reduction method using CoFe‐Prussian blue analogs as precursors and employing Mössbauer spectroscopy to observe structural characteristics before and after transformation is reported. Among these nanoparticles, the CoFe<jats:sub>0.25</jats:sub>B variant, exhibiting favorable electrochemical properties, is chosen and subsequently subjected to hydrolysis to yield CoFe<jats:sub>0.25</jats:sub>BOH nanoparticles, serving as an active catalyst for OER. At a current density of 10 mA cm<jats:sup>−2</jats:sup>, the overpotentials for CoFe<jats:sub>0.25</jats:sub>O<jats:sub><jats:italic>x</jats:italic></jats:sub>H<jats:sub><jats:italic>y</jats:italic></jats:sub> and CoFe<jats:sub>0.25</jats:sub>BOH are 362 and 310 mV, respectively, with Tafel slopes decreasing from 393 to 93 mV dec<jats:sup>−1</jats:sup>. Furthermore, the <jats:italic>i</jats:italic>–<jats:italic>t</jats:italic> test reveals no significant loss of electrochemical performance within 24 h, substantiating the efficacy of enhancing the electrocatalytic performance of CoFeO<jats:sub><jats:italic>x</jats:italic></jats:sub>H<jats:sub><jats:italic>y</jats:italic></jats:sub> through the introduction of electron‐deficient elements. This research offers novel insights into the development of efficient and stable water electrolysis catalysts.","PeriodicalId":20074,"journal":{"name":"Physica Status Solidi A-applications and Materials Science","volume":"111 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Status Solidi A-applications and Materials Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/pssa.202400481","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Among hydrogen production methods, water electrolysis stands out, but its efficiency is hampered by the substantial energy barrier of the oxygen evolution reaction (OER). To address this, incorporating electron‐deficient boron (B) into Co–Fe hydroxide (CoFeOxHy) promotes higher oxidation states of involved metals, greatly enhancing OER activity and charge transfer capabilities. Herein, the synthesis of a range of amorphous CoFeB nanoparticles with varying Fe to (Co+Fe) atomic ratios achieved through a simple chemical reduction method using CoFe‐Prussian blue analogs as precursors and employing Mössbauer spectroscopy to observe structural characteristics before and after transformation is reported. Among these nanoparticles, the CoFe0.25B variant, exhibiting favorable electrochemical properties, is chosen and subsequently subjected to hydrolysis to yield CoFe0.25BOH nanoparticles, serving as an active catalyst for OER. At a current density of 10 mA cm−2, the overpotentials for CoFe0.25OxHy and CoFe0.25BOH are 362 and 310 mV, respectively, with Tafel slopes decreasing from 393 to 93 mV dec−1. Furthermore, the it test reveals no significant loss of electrochemical performance within 24 h, substantiating the efficacy of enhancing the electrocatalytic performance of CoFeOxHy through the introduction of electron‐deficient elements. This research offers novel insights into the development of efficient and stable water electrolysis catalysts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过掺杂硼提高钴铁氢氧化物的氧气进化反应性能
在制氢方法中,水电解法脱颖而出,但其效率却因氧进化反应(OER)的巨大能量障碍而受到影响。为解决这一问题,在氢氧化钴铁(CoFeOxHy)中加入缺电子硼(B)可促进相关金属的高氧化态,从而大大提高 OER 活性和电荷转移能力。本文以 CoFe-Prussian blue 类似物为前体,通过简单的化学还原方法合成了一系列非晶 CoFeB 纳米粒子,这些粒子具有不同的铁原子比(Co+Fe),并利用莫斯鲍尔光谱观察了转化前后的结构特征。在这些纳米粒子中,CoFe0.25B 变体表现出良好的电化学特性,被选中并随后进行水解,生成 CoFe0.25BOH 纳米粒子,作为 OER 的活性催化剂。在 10 mA cm-2 的电流密度下,CoFe0.25OxHy 和 CoFe0.25BOH 的过电位分别为 362 mV 和 310 mV,Tafel 斜率从 393 mV dec-1 下降到 93 mV dec-1。此外,i-t 测试表明,24 小时内电化学性能没有明显下降,证明了通过引入缺电子元素提高 CoFeOxHy 电催化性能的有效性。这项研究为开发高效稳定的水电解催化剂提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.70
自引率
5.00%
发文量
393
审稿时长
2 months
期刊介绍: The physica status solidi (pss) journal group is devoted to the thorough peer review and the rapid publication of new and important results in all fields of solid state and materials physics, from basic science to applications and devices. Among the largest and most established international publications, the pss journals publish reviews, letters and original articles, as regular content as well as in special issues and topical sections.
期刊最新文献
Plasma‐Assisted Preparation and Properties of Chitosan‐Based Magnetic Hydrogels Performance Enhancement of SnS Solar Cell with Tungsten Disulfide Electron Transport Layer and Molybdenum Trioxide Hole Transport Layer Advancements in Piezoelectric‐Enabled Devices for Optical Communication Structural Distortions and Short‐Range Magnetism in a Honeycomb Iridate Cu3ZnIr2O6 Enhancing Reliability and Regeneration of Single Passivated Emitter Rear Contact Solar Cell Modules through Alternating Current Power Application to Mitigate Light and Elevated Temperature‐Induced Degradation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1