Substring Density Estimation From Traces

IF 2.2 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Information Theory Pub Date : 2024-06-25 DOI:10.1109/TIT.2024.3418377
Kayvon Mazooji;Ilan Shomorony
{"title":"Substring Density Estimation From Traces","authors":"Kayvon Mazooji;Ilan Shomorony","doi":"10.1109/TIT.2024.3418377","DOIUrl":null,"url":null,"abstract":"In the trace reconstruction problem, one seeks to reconstruct a binary string s from a collection of traces, each of which is obtained by passing s through a deletion channel. It is known that \n<inline-formula> <tex-math>$\\exp (\\tilde {O}(n^{1/5}))$ </tex-math></inline-formula>\n traces suffice to reconstruct any length-n string with high probability. We consider a variant of the trace reconstruction problem where the goal is to recover a “density map” that indicates the locations of each length-k substring throughout s. We show that when \n<inline-formula> <tex-math>$k = c \\log n$ </tex-math></inline-formula>\n where c is constant, \n<inline-formula> <tex-math>$\\epsilon ^{-2}\\cdot \\text { poly} (n)$ </tex-math></inline-formula>\n traces suffice to recover the density map with error at most \n<inline-formula> <tex-math>$\\epsilon $ </tex-math></inline-formula>\n. As a result, when restricted to a set of source strings whose minimum “density map distance” is at least \n<inline-formula> <tex-math>$1/\\text {poly}(n)$ </tex-math></inline-formula>\n, the trace reconstruction problem can be solved with polynomially many traces.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"70 8","pages":"5782-5798"},"PeriodicalIF":2.2000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10571548","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10571548/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In the trace reconstruction problem, one seeks to reconstruct a binary string s from a collection of traces, each of which is obtained by passing s through a deletion channel. It is known that $\exp (\tilde {O}(n^{1/5}))$ traces suffice to reconstruct any length-n string with high probability. We consider a variant of the trace reconstruction problem where the goal is to recover a “density map” that indicates the locations of each length-k substring throughout s. We show that when $k = c \log n$ where c is constant, $\epsilon ^{-2}\cdot \text { poly} (n)$ traces suffice to recover the density map with error at most $\epsilon $ . As a result, when restricted to a set of source strings whose minimum “density map distance” is at least $1/\text {poly}(n)$ , the trace reconstruction problem can be solved with polynomially many traces.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从轨迹估算子串密度
在踪迹重构问题中,我们试图从踪迹集合中重构二进制字符串 s,每个踪迹集合都是通过删除通道得到的。众所周知,$\exp (\tilde {O}(n^{1/5}))$ 迹足以高概率地重建任何长度为 n 的字符串。我们证明,当 $k = c \log n$ 时(其中 c 是常数),$epsilon ^{-2}\cdot \text { poly} (n)$ 跟踪足以以最多 $\epsilon $ 的误差恢复密度图。因此,当局限于最小 "密度图距离 "至少为 1/text {poly}(n)$ 的源字符串集合时,可以用多项式数量的踪迹来解决踪迹重构问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Information Theory
IEEE Transactions on Information Theory 工程技术-工程:电子与电气
CiteScore
5.70
自引率
20.00%
发文量
514
审稿时长
12 months
期刊介绍: The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.
期刊最新文献
Table of Contents IEEE Transactions on Information Theory Publication Information IEEE Transactions on Information Theory Information for Authors Large and Small Deviations for Statistical Sequence Matching Derivatives of Entropy and the MMSE Conjecture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1