Analysis and Optimization of Sense-and-Set Piezoelectric Energy Harvesting Interface Circuits

IF 2.8 2区 工程技术 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Transactions on Very Large Scale Integration (VLSI) Systems Pub Date : 2024-06-20 DOI:10.1109/TVLSI.2024.3409668
Loai G. Salem
{"title":"Analysis and Optimization of Sense-and-Set Piezoelectric Energy Harvesting Interface Circuits","authors":"Loai G. Salem","doi":"10.1109/TVLSI.2024.3409668","DOIUrl":null,"url":null,"abstract":"This article presents the modeling and optimization of a sense-and-set (SaS) rectifier. The basic equations governing the operation of a SaS rectifier are derived analytically using Laplace-transform techniques. An expression for the harvesting efficiency of a SaS rectifier is developed by evaluating the conduction and gate-drive losses as well as the output power of the rectifier. The derived expressions are then employed to locate the optimal design point of a SaS interface circuit. The proposed modeling approach reduces the required run time by more than 2000 times as compared to SPICE simulation without sacrificing accuracy. The following design parameters are determined for maximum efficiency: optimal relative size between the rectifier switches, total conductance of the rectifier, and sensing frequency. The close match between the theoretical expressions and circuit simulation results validates the proposed analysis.","PeriodicalId":13425,"journal":{"name":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10566582/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents the modeling and optimization of a sense-and-set (SaS) rectifier. The basic equations governing the operation of a SaS rectifier are derived analytically using Laplace-transform techniques. An expression for the harvesting efficiency of a SaS rectifier is developed by evaluating the conduction and gate-drive losses as well as the output power of the rectifier. The derived expressions are then employed to locate the optimal design point of a SaS interface circuit. The proposed modeling approach reduces the required run time by more than 2000 times as compared to SPICE simulation without sacrificing accuracy. The following design parameters are determined for maximum efficiency: optimal relative size between the rectifier switches, total conductance of the rectifier, and sensing frequency. The close match between the theoretical expressions and circuit simulation results validates the proposed analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
感应和设置压电能量收集接口电路的分析与优化
本文介绍了感测和设定(SaS)整流器的建模和优化。使用拉普拉斯变换技术分析得出了控制 SaS 整流器运行的基本方程。通过评估整流器的传导和栅极驱动损耗以及输出功率,得出了 SaS 整流器的采集效率表达式。推导出的表达式可用于确定 SaS 接口电路的最佳设计点。与 SPICE 仿真相比,所提出的建模方法在不影响精度的前提下将所需运行时间缩短了 2000 多倍。为实现最高效率,确定了以下设计参数:整流器开关之间的最佳相对尺寸、整流器的总电导和感应频率。理论表达式与电路仿真结果之间的密切匹配验证了所提出的分析方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.40
自引率
7.10%
发文量
187
审稿时长
3.6 months
期刊介绍: The IEEE Transactions on VLSI Systems is published as a monthly journal under the co-sponsorship of the IEEE Circuits and Systems Society, the IEEE Computer Society, and the IEEE Solid-State Circuits Society. Design and realization of microelectronic systems using VLSI/ULSI technologies require close collaboration among scientists and engineers in the fields of systems architecture, logic and circuit design, chips and wafer fabrication, packaging, testing and systems applications. Generation of specifications, design and verification must be performed at all abstraction levels, including the system, register-transfer, logic, circuit, transistor and process levels. To address this critical area through a common forum, the IEEE Transactions on VLSI Systems have been founded. The editorial board, consisting of international experts, invites original papers which emphasize and merit the novel systems integration aspects of microelectronic systems including interactions among systems design and partitioning, logic and memory design, digital and analog circuit design, layout synthesis, CAD tools, chips and wafer fabrication, testing and packaging, and systems level qualification. Thus, the coverage of these Transactions will focus on VLSI/ULSI microelectronic systems integration.
期刊最新文献
Sophon: A Time-Repeatable and Low-Latency Architecture for Embedded Real-Time Systems Based on RISC-V CR-DRAM: Improving DRAM Refresh Energy Efficiency With Inter-Subarray Charge Recycling A Novel TriNet Architecture for Enhanced Analog IC Design Automation A Two-Channel Interleaved ADC With Fast-Converging Foreground Time Calibration and Comparison-Based Control Logic A Post-Bond ILV Test Method in Monolithic 3-D ICs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1