Random Subspace Sampling for Classification with Missing Data

IF 1.2 3区 计算机科学 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Journal of Computer Science and Technology Pub Date : 2024-06-06 DOI:10.1007/s11390-023-1611-9
Yun-Hao Cao, Jian-Xin Wu
{"title":"Random Subspace Sampling for Classification with Missing Data","authors":"Yun-Hao Cao, Jian-Xin Wu","doi":"10.1007/s11390-023-1611-9","DOIUrl":null,"url":null,"abstract":"<p>Many real-world datasets suffer from the unavoidable issue of missing values, and therefore classification with missing data has to be carefully handled since inadequate treatment of missing values will cause large errors. In this paper, we propose a random subspace sampling method, RSS, by sampling missing items from the corresponding feature histogram distributions in random subspaces, which is effective and efficient at different levels of missing data. Unlike most established approaches, RSS does not train on fixed imputed datasets. Instead, we design a dynamic training strategy where the filled values change dynamically by resampling during training. Moreover, thanks to the sampling strategy, we design an ensemble testing strategy where we combine the results of multiple runs of a single model, which is more efficient and resource-saving than previous ensemble methods. Finally, we combine these two strategies with the random subspace method, which makes our estimations more robust and accurate. The effectiveness of the proposed RSS method is well validated by experimental studies.</p>","PeriodicalId":50222,"journal":{"name":"Journal of Computer Science and Technology","volume":"4 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11390-023-1611-9","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Many real-world datasets suffer from the unavoidable issue of missing values, and therefore classification with missing data has to be carefully handled since inadequate treatment of missing values will cause large errors. In this paper, we propose a random subspace sampling method, RSS, by sampling missing items from the corresponding feature histogram distributions in random subspaces, which is effective and efficient at different levels of missing data. Unlike most established approaches, RSS does not train on fixed imputed datasets. Instead, we design a dynamic training strategy where the filled values change dynamically by resampling during training. Moreover, thanks to the sampling strategy, we design an ensemble testing strategy where we combine the results of multiple runs of a single model, which is more efficient and resource-saving than previous ensemble methods. Finally, we combine these two strategies with the random subspace method, which makes our estimations more robust and accurate. The effectiveness of the proposed RSS method is well validated by experimental studies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
缺失数据分类的随机子空间采样
现实世界中的许多数据集都不可避免地存在缺失值的问题,因此必须谨慎处理缺失数据的分类,因为对缺失值处理不当会导致很大的误差。在本文中,我们提出了一种随机子空间抽样方法--RSS,即从随机子空间中相应的特征直方图分布中抽取缺失项,这种方法在不同程度的缺失数据中都有效且高效。与大多数已有方法不同的是,RSS 不在固定的估算数据集上进行训练。相反,我们设计了一种动态训练策略,在训练过程中通过重新采样动态改变填充值。此外,得益于采样策略,我们还设计了一种集合测试策略,将单个模型的多次运行结果结合起来,这比以往的集合方法更高效、更节省资源。最后,我们将这两种策略与随机子空间方法相结合,从而使我们的估计更加稳健和准确。实验研究充分验证了所提出的 RSS 方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Computer Science and Technology
Journal of Computer Science and Technology 工程技术-计算机:软件工程
CiteScore
4.00
自引率
0.00%
发文量
2255
审稿时长
9.8 months
期刊介绍: Journal of Computer Science and Technology (JCST), the first English language journal in the computer field published in China, is an international forum for scientists and engineers involved in all aspects of computer science and technology to publish high quality and refereed papers. Papers reporting original research and innovative applications from all parts of the world are welcome. Papers for publication in the journal are selected through rigorous peer review, to ensure originality, timeliness, relevance, and readability. While the journal emphasizes the publication of previously unpublished materials, selected conference papers with exceptional merit that require wider exposure are, at the discretion of the editors, also published, provided they meet the journal''s peer review standards. The journal also seeks clearly written survey and review articles from experts in the field, to promote insightful understanding of the state-of-the-art and technology trends. Topics covered by Journal of Computer Science and Technology include but are not limited to: -Computer Architecture and Systems -Artificial Intelligence and Pattern Recognition -Computer Networks and Distributed Computing -Computer Graphics and Multimedia -Software Systems -Data Management and Data Mining -Theory and Algorithms -Emerging Areas
期刊最新文献
Balancing Accuracy and Training Time in Federated Learning for Violence Detection in Surveillance Videos: A Study of Neural Network Architectures A Survey of Multimodal Controllable Diffusion Models A Survey of LLM Datasets: From Autoregressive Model to AI Chatbot Advances of Pipeline Model Parallelism for Deep Learning Training: An Overview Age-of-Information-Aware Federated Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1