Improved Video-Based Point Cloud Compression via Segmentation

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL Sensors Pub Date : 2024-07-01 DOI:10.3390/s24134285
Faranak Tohidi, Manoranjan Paul, Anwaar Ulhaq, Subrata Chakraborty
{"title":"Improved Video-Based Point Cloud Compression via Segmentation","authors":"Faranak Tohidi, Manoranjan Paul, Anwaar Ulhaq, Subrata Chakraborty","doi":"10.3390/s24134285","DOIUrl":null,"url":null,"abstract":"A point cloud is a representation of objects or scenes utilising unordered points comprising 3D positions and attributes. The ability of point clouds to mimic natural forms has gained significant attention from diverse applied fields, such as virtual reality and augmented reality. However, the point cloud, especially those representing dynamic scenes or objects in motion, must be compressed efficiently due to its huge data volume. The latest video-based point cloud compression (V-PCC) standard for dynamic point clouds divides the 3D point cloud into many patches using computationally expensive normal estimation, segmentation, and refinement. The patches are projected onto a 2D plane to apply existing video coding techniques. This process often results in losing proximity information and some original points. This loss induces artefacts that adversely affect user perception. The proposed method segments dynamic point clouds based on shape similarity and occlusion before patch generation. This segmentation strategy helps maintain the points’ proximity and retain more original points by exploiting the density and occlusion of the points. The experimental results establish that the proposed method significantly outperforms the V-PCC standard and other relevant methods regarding rate–distortion performance and subjective quality testing for both geometric and texture data of several benchmark video sequences.","PeriodicalId":21698,"journal":{"name":"Sensors","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s24134285","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A point cloud is a representation of objects or scenes utilising unordered points comprising 3D positions and attributes. The ability of point clouds to mimic natural forms has gained significant attention from diverse applied fields, such as virtual reality and augmented reality. However, the point cloud, especially those representing dynamic scenes or objects in motion, must be compressed efficiently due to its huge data volume. The latest video-based point cloud compression (V-PCC) standard for dynamic point clouds divides the 3D point cloud into many patches using computationally expensive normal estimation, segmentation, and refinement. The patches are projected onto a 2D plane to apply existing video coding techniques. This process often results in losing proximity information and some original points. This loss induces artefacts that adversely affect user perception. The proposed method segments dynamic point clouds based on shape similarity and occlusion before patch generation. This segmentation strategy helps maintain the points’ proximity and retain more original points by exploiting the density and occlusion of the points. The experimental results establish that the proposed method significantly outperforms the V-PCC standard and other relevant methods regarding rate–distortion performance and subjective quality testing for both geometric and texture data of several benchmark video sequences.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过分割改进基于视频的点云压缩
点云是利用包含三维位置和属性的无序点对物体或场景的表示。点云模仿自然形态的能力已在虚拟现实和增强现实等多个应用领域受到广泛关注。然而,由于点云的数据量巨大,必须对其进行有效压缩,尤其是那些表示动态场景或运动中物体的点云。最新的基于视频的动态点云压缩(V-PCC)标准使用计算成本高昂的法线估算、分割和细化技术,将三维点云分割成许多补丁。这些斑块被投影到二维平面上,以应用现有的视频编码技术。这一过程通常会导致邻近信息和一些原始点的丢失。这种损失会导致伪影,对用户的感知产生不利影响。所提出的方法在生成补丁之前,会根据形状相似性和遮挡情况对动态点云进行分割。这种分割策略通过利用点的密度和闭塞性,有助于保持点的邻近性并保留更多原始点。实验结果表明,在几个基准视频序列的几何和纹理数据的速率-失真性能和主观质量测试方面,所提出的方法明显优于 V-PCC 标准和其他相关方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Blockchain 6G-Based Wireless Network Security Management with Optimization Using Machine Learning Techniques. A Comprehensive Review on the Viscoelastic Parameters Used for Engineering Materials, Including Soft Materials, and the Relationships between Different Damping Parameters. A Mixed Approach for Clock Synchronization in Distributed Data Acquisition Systems. A Novel Topology of a 3 × 3 Series Phased Array Antenna with Aperture-Coupled Feeding. A Photoelectrochemical Biosensor Mediated by CRISPR/Cas13a for Direct and Specific Detection of MiRNA-21.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1