The Application of Commercial Surface Acoustic Wave Radio Communication Filters as Transducers for DMMP Sensors

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL Sensors Pub Date : 2024-07-02 DOI:10.3390/s24134299
Michał Grabka, Krzysztof Jasek, Mateusz Pasternak, Zygfryd Witkiewicz
{"title":"The Application of Commercial Surface Acoustic Wave Radio Communication Filters as Transducers for DMMP Sensors","authors":"Michał Grabka, Krzysztof Jasek, Mateusz Pasternak, Zygfryd Witkiewicz","doi":"10.3390/s24134299","DOIUrl":null,"url":null,"abstract":"In the present study, we used two popular radio communication SAW resonators as a base for gas sensors and tested their performance. Taking into account issues related to sensor sensitivity, the possibility of applying a sensor layer, the availability of devices, and other related issues, we selected two popular single-port resonators with center frequencies of 315 and 433 MHz (models R315 and R433, respectively) for testing purposes. Both resonators were equipped with a sensitive film of hexafluoroisopropanol-substituted polydimethylsiloxane, a material that selectively absorbs molecules with a high ability to form basic hydrogen bonds. Fabricated sensors were used to detect trace amounts of dimethyl methylphosphonate (DMMP) vapor, which has often been used in similar studies as a nerve chemical warfare agent simulant. Sensors using both devices loaded with sensor layers of an optimal thickness rapidly reacted to a gas containing DMMP at a concentration of 3 mg/m3, generating a stable analytical signal ranging from several to several dozen kilohertz. In the case of R433, the frequency signal was 20.5 kHz at 1 min from the beginning of exposure to DMMP. The obtained results showed that the used transducers exhibited good performance as a base for gas sensors. Finally, their suitability for sensing applications was confirmed by a comparison with the results obtained in previous similar studies.","PeriodicalId":21698,"journal":{"name":"Sensors","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s24134299","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In the present study, we used two popular radio communication SAW resonators as a base for gas sensors and tested their performance. Taking into account issues related to sensor sensitivity, the possibility of applying a sensor layer, the availability of devices, and other related issues, we selected two popular single-port resonators with center frequencies of 315 and 433 MHz (models R315 and R433, respectively) for testing purposes. Both resonators were equipped with a sensitive film of hexafluoroisopropanol-substituted polydimethylsiloxane, a material that selectively absorbs molecules with a high ability to form basic hydrogen bonds. Fabricated sensors were used to detect trace amounts of dimethyl methylphosphonate (DMMP) vapor, which has often been used in similar studies as a nerve chemical warfare agent simulant. Sensors using both devices loaded with sensor layers of an optimal thickness rapidly reacted to a gas containing DMMP at a concentration of 3 mg/m3, generating a stable analytical signal ranging from several to several dozen kilohertz. In the case of R433, the frequency signal was 20.5 kHz at 1 min from the beginning of exposure to DMMP. The obtained results showed that the used transducers exhibited good performance as a base for gas sensors. Finally, their suitability for sensing applications was confirmed by a comparison with the results obtained in previous similar studies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将商用表面声波无线电通信滤波器用作 DMMP 传感器的换能器
在本研究中,我们使用了两种常用的无线电通信声表面波谐振器作为气体传感器的基础,并测试了它们的性能。考虑到传感器灵敏度、应用传感器层的可能性、器件的可用性以及其他相关问题,我们选择了两个中心频率分别为 315 和 433 MHz 的常用单端口谐振器(型号分别为 R315 和 R433)进行测试。这两个谐振器都配备了由六氟异丙醇取代的聚二甲基硅氧烷制成的敏感薄膜,这种材料可选择性地吸收形成基本氢键能力强的分子。制作的传感器用于检测痕量甲基膦酸二甲酯(DMMP)蒸气,这种蒸气在类似研究中经常被用作神经化学战剂模拟剂。使用这两种装置的传感器都装有最佳厚度的传感器层,能迅速对浓度为 3 mg/m3 的含有 DMMP 的气体发生反应,产生几千赫兹到几十千赫兹的稳定分析信号。就 R433 而言,在开始接触 DMMP 1 分钟时,频率信号为 20.5 千赫。结果表明,所使用的传感器作为气体传感器的基础具有良好的性能。最后,通过与以前类似研究中获得的结果进行比较,证实了这些传感器适用于传感应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Blockchain 6G-Based Wireless Network Security Management with Optimization Using Machine Learning Techniques. A Comprehensive Review on the Viscoelastic Parameters Used for Engineering Materials, Including Soft Materials, and the Relationships between Different Damping Parameters. A Mixed Approach for Clock Synchronization in Distributed Data Acquisition Systems. A Novel Topology of a 3 × 3 Series Phased Array Antenna with Aperture-Coupled Feeding. A Photoelectrochemical Biosensor Mediated by CRISPR/Cas13a for Direct and Specific Detection of MiRNA-21.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1