SGK-Net: A Novel Navigation Scene Graph Generation Network

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL Sensors Pub Date : 2024-07-03 DOI:10.3390/s24134329
Wenbin Yang, Hao Qiu, Xiangfeng Luo, Shaorong Xie
{"title":"SGK-Net: A Novel Navigation Scene Graph Generation Network","authors":"Wenbin Yang, Hao Qiu, Xiangfeng Luo, Shaorong Xie","doi":"10.3390/s24134329","DOIUrl":null,"url":null,"abstract":"Scene graphs can enhance the understanding capability of intelligent ships in navigation scenes. However, the complex entity relationships and the presence of significant noise in contextual information within navigation scenes pose challenges for navigation scene graph generation (NSGG). To address these issues, this paper proposes a novel NSGG network named SGK-Net. This network comprises three innovative modules. The Semantic-Guided Multimodal Fusion (SGMF) module utilizes prior information on relationship semantics to fuse multimodal information and construct relationship features, thereby elucidating the relationships between entities and reducing semantic ambiguity caused by complex relationships. The Graph Structure Learning-based Structure Evolution (GSLSE) module, based on graph structure learning, reduces redundancy in relationship features and optimizes the computational complexity in subsequent contextual message passing. The Key Entity Message Passing (KEMP) module takes full advantage of contextual information to refine relationship features, thereby reducing noise interference from non-key nodes. Furthermore, this paper constructs the first Ship Navigation Scene Graph Simulation dataset, named SNSG-Sim, which provides a foundational dataset for the research on ship navigation SGG. Experimental results on the SNSG-sim dataset demonstrate that our method achieves an improvement of 8.31% (R@50) in the PredCls task and 7.94% (R@50) in the SGCls task compared to the baseline method, validating the effectiveness of our method in navigation scene graph generation.","PeriodicalId":21698,"journal":{"name":"Sensors","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s24134329","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Scene graphs can enhance the understanding capability of intelligent ships in navigation scenes. However, the complex entity relationships and the presence of significant noise in contextual information within navigation scenes pose challenges for navigation scene graph generation (NSGG). To address these issues, this paper proposes a novel NSGG network named SGK-Net. This network comprises three innovative modules. The Semantic-Guided Multimodal Fusion (SGMF) module utilizes prior information on relationship semantics to fuse multimodal information and construct relationship features, thereby elucidating the relationships between entities and reducing semantic ambiguity caused by complex relationships. The Graph Structure Learning-based Structure Evolution (GSLSE) module, based on graph structure learning, reduces redundancy in relationship features and optimizes the computational complexity in subsequent contextual message passing. The Key Entity Message Passing (KEMP) module takes full advantage of contextual information to refine relationship features, thereby reducing noise interference from non-key nodes. Furthermore, this paper constructs the first Ship Navigation Scene Graph Simulation dataset, named SNSG-Sim, which provides a foundational dataset for the research on ship navigation SGG. Experimental results on the SNSG-sim dataset demonstrate that our method achieves an improvement of 8.31% (R@50) in the PredCls task and 7.94% (R@50) in the SGCls task compared to the baseline method, validating the effectiveness of our method in navigation scene graph generation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SGK-Net:新颖的导航场景图生成网络
场景图可以增强智能船舶对导航场景的理解能力。然而,导航场景中复杂的实体关系和上下文信息中存在的大量噪声给导航场景图生成(NSGG)带来了挑战。为解决这些问题,本文提出了一种名为 SGK-Net 的新型 NSGG 网络。该网络由三个创新模块组成。语义引导的多模态融合(SGMF)模块利用关系语义的先验信息融合多模态信息并构建关系特征,从而阐明实体之间的关系并减少复杂关系造成的语义模糊。基于图结构学习的结构演化(GSLSE)模块以图结构学习为基础,减少了关系特征的冗余,优化了后续上下文信息传递的计算复杂度。关键实体信息传递(KEMP)模块充分利用上下文信息来完善关系特征,从而减少来自非关键节点的噪声干扰。此外,本文还构建了首个船舶导航场景图仿真数据集,命名为 SNSG-Sim,为船舶导航 SGG 研究提供了基础数据集。SNSG-sim 数据集的实验结果表明,与基线方法相比,我们的方法在 PredCls 任务中提高了 8.31% (R@50),在 SGCls 任务中提高了 7.94% (R@50),验证了我们的方法在导航场景图生成中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Blockchain 6G-Based Wireless Network Security Management with Optimization Using Machine Learning Techniques. A Comprehensive Review on the Viscoelastic Parameters Used for Engineering Materials, Including Soft Materials, and the Relationships between Different Damping Parameters. A Mixed Approach for Clock Synchronization in Distributed Data Acquisition Systems. A Novel Topology of a 3 × 3 Series Phased Array Antenna with Aperture-Coupled Feeding. A Photoelectrochemical Biosensor Mediated by CRISPR/Cas13a for Direct and Specific Detection of MiRNA-21.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1