ARAware: Assisting Visually Impaired People with Real-Time Critical Moving Object Identification

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL Sensors Pub Date : 2024-07-01 DOI:10.3390/s24134282
Hadeel Surougi, Cong Zhao, Julie A. McCann
{"title":"ARAware: Assisting Visually Impaired People with Real-Time Critical Moving Object Identification","authors":"Hadeel Surougi, Cong Zhao, Julie A. McCann","doi":"10.3390/s24134282","DOIUrl":null,"url":null,"abstract":"Autonomous outdoor moving objects like cars, motorcycles, bicycles, and pedestrians present different risks to the safety of Visually Impaired People (VIPs). Consequently, many camera-based VIP mobility assistive solutions have resulted. However, they fail to guarantee VIP safety in practice, i.e., they cannot effectively prevent collisions with more dangerous threats moving at higher speeds, namely, Critical Moving Objects (CMOs). This paper presents the first practical camera-based VIP mobility assistant scheme, ARAware, that effectively identifies CMOs in real-time to give the VIP more time to avoid danger through simultaneously addressing CMO identification, CMO risk level evaluation and classification, and prioritised CMO warning notification. Experimental results based on our real-world prototype demonstrate that ARAware accurately identifies CMOs (with 97.26% mAR and 88.20% mAP) in real-time (with a 32 fps processing speed for 30 fps incoming video). It precisely classifies CMOs according to their risk levels (with 100% mAR and 91.69% mAP), and warns in a timely manner about high-risk CMOs while effectively reducing false alarms by postponing the warning of low-risk CMOs. Compared to the closest state-of-the-art approach, DEEP-SEE, ARAware achieves significantly higher CMO identification accuracy (by 42.62% in mAR and 10.88% in mAP), with a 93% faster end-to-end processing speed.","PeriodicalId":21698,"journal":{"name":"Sensors","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s24134282","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Autonomous outdoor moving objects like cars, motorcycles, bicycles, and pedestrians present different risks to the safety of Visually Impaired People (VIPs). Consequently, many camera-based VIP mobility assistive solutions have resulted. However, they fail to guarantee VIP safety in practice, i.e., they cannot effectively prevent collisions with more dangerous threats moving at higher speeds, namely, Critical Moving Objects (CMOs). This paper presents the first practical camera-based VIP mobility assistant scheme, ARAware, that effectively identifies CMOs in real-time to give the VIP more time to avoid danger through simultaneously addressing CMO identification, CMO risk level evaluation and classification, and prioritised CMO warning notification. Experimental results based on our real-world prototype demonstrate that ARAware accurately identifies CMOs (with 97.26% mAR and 88.20% mAP) in real-time (with a 32 fps processing speed for 30 fps incoming video). It precisely classifies CMOs according to their risk levels (with 100% mAR and 91.69% mAP), and warns in a timely manner about high-risk CMOs while effectively reducing false alarms by postponing the warning of low-risk CMOs. Compared to the closest state-of-the-art approach, DEEP-SEE, ARAware achieves significantly higher CMO identification accuracy (by 42.62% in mAR and 10.88% in mAP), with a 93% faster end-to-end processing speed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ARAware:协助视障人士实时识别关键移动物体
汽车、摩托车、自行车和行人等自主户外移动物体对视力受损者(VIP)的安全构成了不同的风险。因此,许多基于摄像头的视障人士移动辅助解决方案应运而生。然而,在实际应用中,这些方案无法保证视障人士的安全,即无法有效防止与更危险的高速移动威胁,即关键移动物体(CMOs)发生碰撞。本文提出了首个实用的基于摄像头的贵宾移动辅助方案--ARAware,该方案通过同时解决CMO识别、CMO风险等级评估和分类以及优先CMO警告通知等问题,可有效地实时识别CMO,从而为贵宾提供更多的避险时间。基于实际原型的实验结果表明,ARAware 能够实时准确地识别 CMO(mAR 识别率为 97.26%,mAP 识别率为 88.20%)(处理速度为 32 fps,接收视频为 30 fps)。它能根据 CMO 的风险等级对其进行精确分类(mAR 值为 100%,mAP 值为 91.69%),并及时对高风险 CMO 发出警告,同时通过推迟对低风险 CMO 的警告有效减少误报。与最接近的先进方法 DEEP-SEE 相比,ARAware 的 CMO 识别准确率显著提高(mAR 提高 42.62%,mAP 提高 10.88%),端到端处理速度提高 93%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Blockchain 6G-Based Wireless Network Security Management with Optimization Using Machine Learning Techniques. A Comprehensive Review on the Viscoelastic Parameters Used for Engineering Materials, Including Soft Materials, and the Relationships between Different Damping Parameters. A Mixed Approach for Clock Synchronization in Distributed Data Acquisition Systems. A Novel Topology of a 3 × 3 Series Phased Array Antenna with Aperture-Coupled Feeding. A Photoelectrochemical Biosensor Mediated by CRISPR/Cas13a for Direct and Specific Detection of MiRNA-21.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1