{"title":"A hybrid grey wolf optimizer for engineering design problems","authors":"Shuilin Chen, Jianguo Zheng","doi":"10.1007/s10878-024-01189-9","DOIUrl":null,"url":null,"abstract":"<p>Grey wolf optimizer (GWO) is one of the most popular metaheuristics, and it has been presented as highly competitive with other comparison methods. However, the basic GWO needs some improvement, such as premature convergence and imbalance between exploitation and exploration. To address these weaknesses, this paper develops a hybrid grey wolf optimizer (HGWO), which combines the Halton sequence, dimension learning-based, crisscross strategy, and Cauchy mutation strategy. Firstly, the Halton sequence is used to enlarge the search scope and improve the diversity of the solutions. Then, the dimension learning-based is used for position update to balance exploitation and exploration. Furthermore, the crisscross strategy is introduced to enhance convergence precision. Finally, the Cauchy mutation strategy is adapted to avoid falling into the local optimum. The effectiveness of HGWO is demonstrated by comparing it with advanced algorithms on the 15 benchmark functions in different dimensions. The results illustrate that HGWO outperforms other advanced algorithms. Moreover, HGWO is used to solve eight real-world engineering problems, and the results demonstrate that HGWO is superior to different advanced algorithms.</p>","PeriodicalId":50231,"journal":{"name":"Journal of Combinatorial Optimization","volume":"35 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10878-024-01189-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Grey wolf optimizer (GWO) is one of the most popular metaheuristics, and it has been presented as highly competitive with other comparison methods. However, the basic GWO needs some improvement, such as premature convergence and imbalance between exploitation and exploration. To address these weaknesses, this paper develops a hybrid grey wolf optimizer (HGWO), which combines the Halton sequence, dimension learning-based, crisscross strategy, and Cauchy mutation strategy. Firstly, the Halton sequence is used to enlarge the search scope and improve the diversity of the solutions. Then, the dimension learning-based is used for position update to balance exploitation and exploration. Furthermore, the crisscross strategy is introduced to enhance convergence precision. Finally, the Cauchy mutation strategy is adapted to avoid falling into the local optimum. The effectiveness of HGWO is demonstrated by comparing it with advanced algorithms on the 15 benchmark functions in different dimensions. The results illustrate that HGWO outperforms other advanced algorithms. Moreover, HGWO is used to solve eight real-world engineering problems, and the results demonstrate that HGWO is superior to different advanced algorithms.
期刊介绍:
The objective of Journal of Combinatorial Optimization is to advance and promote the theory and applications of combinatorial optimization, which is an area of research at the intersection of applied mathematics, computer science, and operations research and which overlaps with many other areas such as computation complexity, computational biology, VLSI design, communication networks, and management science. It includes complexity analysis and algorithm design for combinatorial optimization problems, numerical experiments and problem discovery with applications in science and engineering.
The Journal of Combinatorial Optimization publishes refereed papers dealing with all theoretical, computational and applied aspects of combinatorial optimization. It also publishes reviews of appropriate books and special issues of journals.