A sustainable CVD approach for ZrN as a potential catalyst for nitrogen reduction reaction†

IF 3.5 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Dalton Transactions Pub Date : 2024-07-04 DOI:10.1039/D4DT01252F
Jean-Pierre Glauber, Julian Lorenz, Ji Liu, Björn Müller, Sebastian Bragulla, Aleksander Kostka, Detlef Rogalla, Michael Wark, Michael Nolan, Corinna Harms and Anjana Devi
{"title":"A sustainable CVD approach for ZrN as a potential catalyst for nitrogen reduction reaction†","authors":"Jean-Pierre Glauber, Julian Lorenz, Ji Liu, Björn Müller, Sebastian Bragulla, Aleksander Kostka, Detlef Rogalla, Michael Wark, Michael Nolan, Corinna Harms and Anjana Devi","doi":"10.1039/D4DT01252F","DOIUrl":null,"url":null,"abstract":"<p >In pursuit of developing alternatives for the highly polluting Haber–Bosch process for ammonia synthesis, the electrocatalytic nitrogen reduction reaction (NRR) using transition metal nitrides such as zirconium mononitride (ZrN) has been identified as a potential pathway for ammonia synthesis. In particular, specific facets of ZrN have been theoretically described as potentially active and selective for NRR. Major obstacles that need to be addressed include the synthesis of tailored catalyst materials that can activate the inert dinitrogen bond while suppressing hydrogen evolution reaction (HER) and not degrading during electrocatalysis. To tackle these challenges, a comprehensive understanding of the influence of the catalyst's structure, composition, and morphology on the NRR activity is required. This motivates the use of metal–organic chemical vapor deposition (MOCVD) as the material synthesis route as it enables catalyst nanoengineering by tailoring the process parameters. Herein, we report the fabrication of oriented and facetted crystalline ZrN thin films employing a single source precursor (SSP) MOCVD approach on silicon and glassy carbon (GC) substrates. First principles density functional theory (DFT) simulations elucidated the preferred decomposition pathway of SSP, whereas <em>ab initio</em> molecular dynamics simulations show that ZrN at room temperature undergoes surface oxidation with ambient O<small><sub>2</sub></small>, yielding a Zr–O–N film, which is consistent with compositional analysis using Rutherford backscattering spectrometry (RBS) in combination with nuclear reaction analysis (NRA) and X-ray photoelectron spectroscopy (XPS) depth profiling. Proof-of-principle electrochemical experiments demonstrated the applicability of the developed ZrN films on GC for NRR and qualitatively hint towards a possible activity for the electrochemical NRR in the sulfuric acid electrolyte.</p>","PeriodicalId":71,"journal":{"name":"Dalton Transactions","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/dt/d4dt01252f?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dalton Transactions","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/dt/d4dt01252f","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

In pursuit of developing alternatives for the highly polluting Haber–Bosch process for ammonia synthesis, the electrocatalytic nitrogen reduction reaction (NRR) using transition metal nitrides such as zirconium mononitride (ZrN) has been identified as a potential pathway for ammonia synthesis. In particular, specific facets of ZrN have been theoretically described as potentially active and selective for NRR. Major obstacles that need to be addressed include the synthesis of tailored catalyst materials that can activate the inert dinitrogen bond while suppressing hydrogen evolution reaction (HER) and not degrading during electrocatalysis. To tackle these challenges, a comprehensive understanding of the influence of the catalyst's structure, composition, and morphology on the NRR activity is required. This motivates the use of metal–organic chemical vapor deposition (MOCVD) as the material synthesis route as it enables catalyst nanoengineering by tailoring the process parameters. Herein, we report the fabrication of oriented and facetted crystalline ZrN thin films employing a single source precursor (SSP) MOCVD approach on silicon and glassy carbon (GC) substrates. First principles density functional theory (DFT) simulations elucidated the preferred decomposition pathway of SSP, whereas ab initio molecular dynamics simulations show that ZrN at room temperature undergoes surface oxidation with ambient O2, yielding a Zr–O–N film, which is consistent with compositional analysis using Rutherford backscattering spectrometry (RBS) in combination with nuclear reaction analysis (NRA) and X-ray photoelectron spectroscopy (XPS) depth profiling. Proof-of-principle electrochemical experiments demonstrated the applicability of the developed ZrN films on GC for NRR and qualitatively hint towards a possible activity for the electrochemical NRR in the sulfuric acid electrolyte.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将氮化锆作为氮还原反应潜在催化剂的可持续 CVD 方法
为了替代高污染的哈伯-博什合成氨工艺,人们发现单氮化锆(ZrN)等过渡金属氮化物上的电催化氮还原反应(NRR)是合成氨的潜在途径。特别是,ZrN 的特定表面已被理论描述为对氮还原反应具有潜在的活性和选择性。需要克服的主要障碍包括合成定制的催化剂材料,既能激活惰性二氮键,又能抑制氢进化反应(HER),并且在电催化过程中不会降解。为了应对这些挑战,需要全面了解催化剂的结构、组成和形态对 NRR 活性的影响。这就促使我们使用金属有机化学气相沉积(MOCVD)作为材料合成路线,因为它可以通过调整工艺参数实现催化剂的纳米工程。在此,我们报告了在硅和玻璃碳 (GC) 基质上采用单源前驱体 (SSP) MOCVD 方法制备取向和刻面结晶 ZrN 薄膜的情况。第一原理密度泛函理论(DFT)模拟阐明了单源前驱体(SSP)的优先分解途径,而ab initio分子动力学模拟则表明,ZrN在室温下会与环境中的O2发生表面氧化反应,生成Zr-O-N薄膜,这与结合核反应分析(NRA)和X射线光电子能谱(XPS)深度剖析的卢瑟福反向散射光谱法(RBS)的成分分析结果一致。原理性电化学实验证明了在 GC 上开发的 ZrN 薄膜在核反应堆中的适用性,并定性地暗示了在硫酸电解液中电化学核反应堆可能具有的活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Dalton Transactions
Dalton Transactions 化学-无机化学与核化学
CiteScore
6.60
自引率
7.50%
发文量
1832
审稿时长
1.5 months
期刊介绍: Dalton Transactions is a journal for all areas of inorganic chemistry, which encompasses the organometallic, bioinorganic and materials chemistry of the elements, with applications including synthesis, catalysis, energy conversion/storage, electrical devices and medicine. Dalton Transactions welcomes high-quality, original submissions in all of these areas and more, where the advancement of knowledge in inorganic chemistry is significant.
期刊最新文献
Design and synthesis of pillared metal-organic frameworks featuring olefinic fragments Al(III) and Ga(III) triflate complexes as solvate ionic liquids: speciation and application as soluble and recyclable Lewis acidic catalysts Uranium-bridged Dimeric Keggin-type Polyoxometalate and its Proton Conductive Properties Unveiling the Impact of Enhanced Hydrophobicity of ZIF-71 on Butanol Purification: Insights from Experimental and Molecular Simulations Facile one-step synthesis of a WO3/ZnWO4 heterojunction modified using ZnFe LDH enhances the PEC water splitting efficiency.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1