首页 > 最新文献

Dalton Transactions最新文献

英文 中文
Multivariate MOF-303/MIL-160 balancing the trade-off between capacity and selectivity in CO2/CH4 separation 多变量MOF-303/MIL-160平衡了CO2/CH4分离中容量和选择性之间的权衡
IF 4 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2026-02-06 DOI: 10.1039/d6dt00085a
Mingming Xu, Xiaokang Wang, Jingjing Chen, Meng Sun, Xueyan Zhang, Weidong Fan, Tingyi Wang, Daofeng Sun
Porous adsorbents with high capacity and selectivity are recognized as promising alternatives for energy-efficient gas separation, but the inherent trade-off between the two metrics hinders their industrial application. Herein, we synthesize a multivariate Al-based metal–organic framework (MOF), namely MOF-303/MIL-160, for CO2/CH4 separation under the guidance of reticular chemistry. The obtained MOF-303/MIL-160 contains both 3,5-pyrazoledicarboxylic acid, the ligand of MOF-303, and 2,5-furandicarboxylic acid, the ligand of MIL-160, in a ratio of 1 : 0.51. MOF-303 exhibits high capacity but low selectivity, whereas MIL-160 shows the opposite. Multivariate MOF-303/MIL-160 draws upon their respective strong points, realizing the balance of trade-off between capacity and selectivity in CO2/CH4 separation.
{"title":"Multivariate MOF-303/MIL-160 balancing the trade-off between capacity and selectivity in CO2/CH4 separation","authors":"Mingming Xu, Xiaokang Wang, Jingjing Chen, Meng Sun, Xueyan Zhang, Weidong Fan, Tingyi Wang, Daofeng Sun","doi":"10.1039/d6dt00085a","DOIUrl":"https://doi.org/10.1039/d6dt00085a","url":null,"abstract":"Porous adsorbents with high capacity and selectivity are recognized as promising alternatives for energy-efficient gas separation, but the inherent trade-off between the two metrics hinders their industrial application. Herein, we synthesize a multivariate Al-based metal–organic framework (MOF), namely MOF-303/MIL-160, for CO<small><sub>2</sub></small>/CH<small><sub>4</sub></small> separation under the guidance of reticular chemistry. The obtained MOF-303/MIL-160 contains both 3,5-pyrazoledicarboxylic acid, the ligand of MOF-303, and 2,5-furandicarboxylic acid, the ligand of MIL-160, in a ratio of 1 : 0.51. MOF-303 exhibits high capacity but low selectivity, whereas MIL-160 shows the opposite. Multivariate MOF-303/MIL-160 draws upon their respective strong points, realizing the balance of trade-off between capacity and selectivity in CO<small><sub>2</sub></small>/CH<small><sub>4</sub></small> separation.","PeriodicalId":71,"journal":{"name":"Dalton Transactions","volume":"159 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2026-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146122350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Purine–Derived N–Heterocyclic Carbene Metal Complexes: Catalytic Applications and Reactivity 嘌呤衍生的n -杂环卡宾金属配合物:催化应用和反应性
IF 4 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2026-02-06 DOI: 10.1039/d6dt00012f
Alejandro Cervantes Reyes, Ricardo Malpica-Calderón, Hugo Valdes, David Morales-Morales
Caffeine and other purine bases are naturally occurring, inexpensive, and readily available heterocycles composed of a fused imidazole–pyrimidine framework, whose five–membered imidazole core corresponds to a N–heterocyclic carbene (NHC) precursor. These features make purine scaffolds ideal precursors for the design of metal–NHC ligands that combine biological relevance, structural diversity, and tunable electronic properties. Over the past two decades (2004–2025), an expanding family of purine–derived NHC complexes has been developed across the periodic table—including those Ru, Ir, Rh, Ni, Pd, Pt, Cu, Ag and Au—revealing distinctive coordination modes, redox behaviors, and catalytic activities. This review provides a comprehensive overview of their synthetic strategies, structural features, and catalytic applications, emphasizing how the intrinsic anisotropy and multifunctionality of the purine framework enable unique metal–ligand interactions and reactivity patterns relevant to sustainable catalysis, photophysics, and bio–organometallic chemistry.
{"title":"Purine–Derived N–Heterocyclic Carbene Metal Complexes: Catalytic Applications and Reactivity","authors":"Alejandro Cervantes Reyes, Ricardo Malpica-Calderón, Hugo Valdes, David Morales-Morales","doi":"10.1039/d6dt00012f","DOIUrl":"https://doi.org/10.1039/d6dt00012f","url":null,"abstract":"Caffeine and other purine bases are naturally occurring, inexpensive, and readily available heterocycles composed of a fused imidazole–pyrimidine framework, whose five–membered imidazole core corresponds to a N–heterocyclic carbene (NHC) precursor. These features make purine scaffolds ideal precursors for the design of metal–NHC ligands that combine biological relevance, structural diversity, and tunable electronic properties. Over the past two decades (2004–2025), an expanding family of purine–derived NHC complexes has been developed across the periodic table—including those Ru, Ir, Rh, Ni, Pd, Pt, Cu, Ag and Au—revealing distinctive coordination modes, redox behaviors, and catalytic activities. This review provides a comprehensive overview of their synthetic strategies, structural features, and catalytic applications, emphasizing how the intrinsic anisotropy and multifunctionality of the purine framework enable unique metal–ligand interactions and reactivity patterns relevant to sustainable catalysis, photophysics, and bio–organometallic chemistry.","PeriodicalId":71,"journal":{"name":"Dalton Transactions","volume":"51 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2026-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146122429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Half-Sandwich η5-Pyrrolyl Rhodium(I) Complexes with Alkene Coordination: Synthesis and Reactivity Exploration 烯配位半夹层η - 5-吡咯基铑配合物的合成及反应性研究
IF 4 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2026-02-06 DOI: 10.1039/d6dt00024j
Jiayu Yan, Jian Sun, Shuangliu Zhou
Rhodium alkene complexes with η5-pyrrolyl ligands are successfully synthesized and fully characterized by X-ray analyses and NMR spectra. The dynamics of pyrrolyl and alkene coordination as well as combined σ- and π-ligation ability of pyrrolyl is demonstrated in the reactions of these half-sandwich complexes with isocyanide, organic azide and Lewis acid
{"title":"Half-Sandwich η5-Pyrrolyl Rhodium(I) Complexes with Alkene Coordination: Synthesis and Reactivity Exploration","authors":"Jiayu Yan, Jian Sun, Shuangliu Zhou","doi":"10.1039/d6dt00024j","DOIUrl":"https://doi.org/10.1039/d6dt00024j","url":null,"abstract":"Rhodium alkene complexes with η5-pyrrolyl ligands are successfully synthesized and fully characterized by X-ray analyses and NMR spectra. The dynamics of pyrrolyl and alkene coordination as well as combined σ- and π-ligation ability of pyrrolyl is demonstrated in the reactions of these half-sandwich complexes with isocyanide, organic azide and Lewis acid","PeriodicalId":71,"journal":{"name":"Dalton Transactions","volume":"12 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2026-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146135443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heterometallic incorporation to promote catalytic activity of polyoxoniobate toward selective oxidation of 5-hydroxymethylfurfural 杂金属掺入促进聚氧烟酸盐选择性氧化5-羟甲基糠醛的催化活性
IF 4 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2026-02-06 DOI: 10.1039/d5dt03085d
Lixiao Song, Ziwei Cai, Caili Lv, Long-Fei Chao, Yun-Dong Cao, Wenjing Xu, Hong Liu, Chun-Hui Zhang, Guanggang Gao
hydroxymethylfurfural (HMF) serves as a key platform compound for the production of value-added chemicals from biomass. Consequently, its catalytic oxidation to 2,5-furandicarboxylic acid (FDCA), a highly promising renewable monomer substance, is of particular importance. But this process entails a complex dehydroxylation reaction, which can lead to numerous competing side reactions. Therefore, developing highly selective catalysts for this transformation remains a critical challenge. This study pioneers the use of a polyoxoniobate (PONb) incorporating vanadium and copper amine complexes, Nb12V3Cu, for the catalytic oxidation of HMF. Unlike conventional polyoxometalates (POMs), this PONbs-based catalyst exhibits superior stability under alkaline reaction conditions. Comparative experiments reveal that incorporating hetero-metallic components into PONb anions promotes the catalytic centers at the terminal or bridging oxygen atoms.These sites demonstrate enhanced synergistic catalysis towards both the hydroxyl and adjacent methylene groups in HMF, thereby facilitating the dehydrogenation and oxidation processes. Under optimized conditions, the Nb12V3Cu catalyst achieved 90.3% HMF conversion with 81.4% FDCA yield, outperforming most reported counterparts, and maintained its activity over five consecutive cycles. This research presents a novel hetero-metallic incorporation approach for the design of polyoxometalate-based catalysts specifically customized for biomass conversion in alkaline media, establishing a robust pathway for cutting-edge research on the selective oxidation of HMF to produce its derived platform chemicals.
{"title":"Heterometallic incorporation to promote catalytic activity of polyoxoniobate toward selective oxidation of 5-hydroxymethylfurfural","authors":"Lixiao Song, Ziwei Cai, Caili Lv, Long-Fei Chao, Yun-Dong Cao, Wenjing Xu, Hong Liu, Chun-Hui Zhang, Guanggang Gao","doi":"10.1039/d5dt03085d","DOIUrl":"https://doi.org/10.1039/d5dt03085d","url":null,"abstract":"hydroxymethylfurfural (HMF) serves as a key platform compound for the production of value-added chemicals from biomass. Consequently, its catalytic oxidation to 2,5-furandicarboxylic acid (FDCA), a highly promising renewable monomer substance, is of particular importance. But this process entails a complex dehydroxylation reaction, which can lead to numerous competing side reactions. Therefore, developing highly selective catalysts for this transformation remains a critical challenge. This study pioneers the use of a polyoxoniobate (PONb) incorporating vanadium and copper amine complexes, Nb12V3Cu, for the catalytic oxidation of HMF. Unlike conventional polyoxometalates (POMs), this PONbs-based catalyst exhibits superior stability under alkaline reaction conditions. Comparative experiments reveal that incorporating hetero-metallic components into PONb anions promotes the catalytic centers at the terminal or bridging oxygen atoms.These sites demonstrate enhanced synergistic catalysis towards both the hydroxyl and adjacent methylene groups in HMF, thereby facilitating the dehydrogenation and oxidation processes. Under optimized conditions, the Nb12V3Cu catalyst achieved 90.3% HMF conversion with 81.4% FDCA yield, outperforming most reported counterparts, and maintained its activity over five consecutive cycles. This research presents a novel hetero-metallic incorporation approach for the design of polyoxometalate-based catalysts specifically customized for biomass conversion in alkaline media, establishing a robust pathway for cutting-edge research on the selective oxidation of HMF to produce its derived platform chemicals.","PeriodicalId":71,"journal":{"name":"Dalton Transactions","volume":"83 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2026-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146122348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A pMnO2@ABVN nanoparticle with dual pH/GSH response for the production of alkyl radicals for the treatment of osteosarcoma. 具有双重pH/GSH反应的pMnO2@ABVN纳米颗粒用于治疗骨肉瘤的烷基自由基的产生。
IF 3.3 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2026-02-06 DOI: 10.1039/d5dt02532j
Guorui Song, Jinke Ji, Changying Li, Jinlong Zhao, Bo Zhang

Photodynamic therapy (PDT) has shown good therapeutic results in recent years, but the efficacy is limited by the hypoxic environment within cancer cells. At present, most of the research studies on overcoming PDT hypoxia focus on providing exogenous oxygen, but the effect is not outstanding. This work shows an unconventional source of free radicals, compared with the traditional PDT strategy of generating reactive oxygen species, using a radical polymerization initiator (2,2'-azobis (2,4-dimethylvaleronitrile), ABVN) to generate alkyl radicals, which is free from the limitation of oxygen, is simpler and more efficient, and has obvious therapeutic effects. By synthesizing hollow mesoporous manganese dioxide (MnO2) as a carrier, the nanoparticles are loaded with ABVN and encapsulated with PEG, which have excellent photothermal properties, can quickly heat up to the thermal decomposition temperature of ABVN under laser irradiation, can degrade and release ABVN in GSH and acidic environments, and generate a large number of alkyl radicals in a short period of time, with excellent treatment efficiency. This study breaks through the limitation of PDT caused by hypoxia in cancer cells and provides a promising research strategy for PDT treatment.

{"title":"A pMnO<sub>2</sub>@ABVN nanoparticle with dual pH/GSH response for the production of alkyl radicals for the treatment of osteosarcoma.","authors":"Guorui Song, Jinke Ji, Changying Li, Jinlong Zhao, Bo Zhang","doi":"10.1039/d5dt02532j","DOIUrl":"https://doi.org/10.1039/d5dt02532j","url":null,"abstract":"<p><p>Photodynamic therapy (PDT) has shown good therapeutic results in recent years, but the efficacy is limited by the hypoxic environment within cancer cells. At present, most of the research studies on overcoming PDT hypoxia focus on providing exogenous oxygen, but the effect is not outstanding. This work shows an unconventional source of free radicals, compared with the traditional PDT strategy of generating reactive oxygen species, using a radical polymerization initiator (2,2'-azobis (2,4-dimethylvaleronitrile), ABVN) to generate alkyl radicals, which is free from the limitation of oxygen, is simpler and more efficient, and has obvious therapeutic effects. By synthesizing hollow mesoporous manganese dioxide (MnO<sub>2</sub>) as a carrier, the nanoparticles are loaded with ABVN and encapsulated with PEG, which have excellent photothermal properties, can quickly heat up to the thermal decomposition temperature of ABVN under laser irradiation, can degrade and release ABVN in GSH and acidic environments, and generate a large number of alkyl radicals in a short period of time, with excellent treatment efficiency. This study breaks through the limitation of PDT caused by hypoxia in cancer cells and provides a promising research strategy for PDT treatment.</p>","PeriodicalId":71,"journal":{"name":"Dalton Transactions","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2026-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146123258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Dual-Phase Luminescent Phosgene Sensor Based on an AIE-Active Ruthenium(II) Polypyridine Complex 基于ae活性钌(II)多吡啶配合物的双相发光光气传感器
IF 4 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2026-02-05 DOI: 10.1039/d5dt03001c
Snehadrinarayan Khatua, Sumit Kumar Patra, Jogat Gogoi, Monosh Rabha
Herein, we are reporting bis-heteroleptic ruthenium(II) complex 1[PF6]2 carrying two o-Phenylenediamine groups (OPD) connected to the 4,7- position of a 1,10-phenanthroline ligand. Compound 1[PF6]2 shows aggregation-induced emission enhancement (AIEE) property through the restriction of intramolecular motion (RIM), which is a known phenomenon where the luminescent intensity of compounds is enhanced in the aggregated state. 1[PF6]2 was used as a highly sensitive (<2 min) luminescent turn-on phosgene-responsive probe and showed high selectivity over other competitive reactive toxic analytes with a low detection limit (72 nM). The −NH− and –NH2 groups in the OPD group provide two active reaction sites for coupling with electrophilic phosgene. It was envisioned that phosgene would simultaneously couple with the −NH− and –NH2 groups in the chemosensor to form a five-membered imidazolone ring. FTIR, ESI−HRMS analysis, and extensive 1H NMR titration established the detailed reaction mechanism. The probe 1[PF6]2 is non-luminescent due to the OPD group present in the analyte targeting σ-donor ligand L1, and nonradiative decay occurs from 3MC excited states. The phosgene reacted with the cyclized ligand become a strong π-acceptor, and also the intramolecular rotation around the C-N bond was restricted due to the steric hindrance of ligand L1. Consequently, the 3MLCTRu(d)→L(π*) state becomes responsible for the bright red emission of phosgene-reacted product through the shifting of the population from 3MC to 3MLCT state. Finally, 1[PF6]2 coated solid-state paper strip was utilized for practical applications to detect the different concentrations of phosgene vapor without any interference from other competitive analytes.
{"title":"A Dual-Phase Luminescent Phosgene Sensor Based on an AIE-Active Ruthenium(II) Polypyridine Complex","authors":"Snehadrinarayan Khatua, Sumit Kumar Patra, Jogat Gogoi, Monosh Rabha","doi":"10.1039/d5dt03001c","DOIUrl":"https://doi.org/10.1039/d5dt03001c","url":null,"abstract":"Herein, we are reporting bis-heteroleptic ruthenium(II) complex 1[PF6]2 carrying two o-Phenylenediamine groups (OPD) connected to the 4,7- position of a 1,10-phenanthroline ligand. Compound 1[PF6]2 shows aggregation-induced emission enhancement (AIEE) property through the restriction of intramolecular motion (RIM), which is a known phenomenon where the luminescent intensity of compounds is enhanced in the aggregated state. 1[PF6]2 was used as a highly sensitive (&lt;2 min) luminescent turn-on phosgene-responsive probe and showed high selectivity over other competitive reactive toxic analytes with a low detection limit (72 nM). The −NH− and –NH2 groups in the OPD group provide two active reaction sites for coupling with electrophilic phosgene. It was envisioned that phosgene would simultaneously couple with the −NH− and –NH2 groups in the chemosensor to form a five-membered imidazolone ring. FTIR, ESI−HRMS analysis, and extensive 1H NMR titration established the detailed reaction mechanism. The probe 1[PF6]2 is non-luminescent due to the OPD group present in the analyte targeting σ-donor ligand L1, and nonradiative decay occurs from 3MC excited states. The phosgene reacted with the cyclized ligand become a strong π-acceptor, and also the intramolecular rotation around the C-N bond was restricted due to the steric hindrance of ligand L1. Consequently, the 3MLCTRu(d)→L(π*) state becomes responsible for the bright red emission of phosgene-reacted product through the shifting of the population from 3MC to 3MLCT state. Finally, 1[PF6]2 coated solid-state paper strip was utilized for practical applications to detect the different concentrations of phosgene vapor without any interference from other competitive analytes.","PeriodicalId":71,"journal":{"name":"Dalton Transactions","volume":"23 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2026-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146135444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intercalation of alkali metal into WTe2, the crystal structure of A0.5WTe2 and observation of a metal-to-semiconductor transition 碱金属嵌入WTe2, A0.5WTe2晶体结构及金属向半导体转变的观察
IF 4 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2026-02-05 DOI: 10.1039/d5dt02775f
Patrick Schmidt, Fabian Strauß, Marcus Scheele, Carl P. Romao, Hans-Jürgen Meyer
We explore the cationic intercalation of tungsten ditelluride (WTe2) with potassium (K), rubidium (Rb), and cesium (Cs), yielding intercalation compounds of the form A0.5WTe2 (A = K, Rb, Cs). Structural characterization was performed using powder X-ray diffraction (PXRD), while diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy and temperature-dependent conductivity measurements were employed to investigate the electronic properties. Density functional theory (DFT) calculations were carried out to support the experimental findings and to provide insight into the intercalation mechanisms and the resulting material characteristics. All synthesized compounds display semiconducting behavior with narrow band gaps, emphasizing the influence of alkali metal intercalation on the electronic structure and transport properties of WTe2. These results advance the fundamental understanding of property modulation in transition-metal dichalcogenides (TMDCs) and highlight their potential for electronic device applications.
我们探索了二碲化钨(WTe2)与钾(K)、铷(Rb)和铯(Cs)的阳离子插层,得到了形式为A0.5WTe2 (A = K, Rb, Cs)的插层化合物。采用粉末x射线衍射(PXRD)进行了结构表征,同时采用漫反射红外傅立叶变换(DRIFT)光谱和温度相关电导率测量来研究电子性质。进行了密度泛函理论(DFT)计算来支持实验结果,并提供对插层机制和所得材料特性的见解。所有合成的化合物都表现出窄带隙的半导体行为,强调碱金属嵌入对WTe2电子结构和输运性质的影响。这些结果促进了对过渡金属二硫化物(TMDCs)性质调制的基本理解,并突出了它们在电子器件应用中的潜力。
{"title":"Intercalation of alkali metal into WTe2, the crystal structure of A0.5WTe2 and observation of a metal-to-semiconductor transition","authors":"Patrick Schmidt, Fabian Strauß, Marcus Scheele, Carl P. Romao, Hans-Jürgen Meyer","doi":"10.1039/d5dt02775f","DOIUrl":"https://doi.org/10.1039/d5dt02775f","url":null,"abstract":"We explore the cationic intercalation of tungsten ditelluride (WTe<small><sub>2</sub></small>) with potassium (K), rubidium (Rb), and cesium (Cs), yielding intercalation compounds of the form <em>A</em><small><sub>0.5</sub></small>WTe<small><sub>2</sub></small> (<em>A</em> = K, Rb, Cs). Structural characterization was performed using powder X-ray diffraction (PXRD), while diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy and temperature-dependent conductivity measurements were employed to investigate the electronic properties. Density functional theory (DFT) calculations were carried out to support the experimental findings and to provide insight into the intercalation mechanisms and the resulting material characteristics. All synthesized compounds display semiconducting behavior with narrow band gaps, emphasizing the influence of alkali metal intercalation on the electronic structure and transport properties of WTe<small><sub>2</sub></small>. These results advance the fundamental understanding of property modulation in transition-metal dichalcogenides (TMDCs) and highlight their potential for electronic device applications.","PeriodicalId":71,"journal":{"name":"Dalton Transactions","volume":"19 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2026-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146116151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
[Ru6(μ6-Sb)(CO)18]3-: Deeply Reduced Metal Carbonyl Cluster Embedded with Naked μ6-Sb [Ru6(μ6-Sb)(CO)18]3-:裸μ6-Sb包埋深度还原金属羰基团簇
IF 4 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2026-02-04 DOI: 10.1039/d6dt00002a
Cheng Ding, Xian Xu, qian qin, Jingen Ding, Li Xu
The redox reaction of K3Sb and Ru3(CO)12 in the ethylenediamine (en) of 2,2,2-cryptand to produce the deeply reduced [Ru6(μ6-Sb)(μ2-CO)2(CO)16]3- (1) wherein the unprecedented boat-like Ru6 cluster unit is embedded with μ6-Sb for the first time. Structural and bonding evolution from the reported electroneutral {Ru6(μ5-Sb)(μ2-H)3(CO)18SbPh3} (2) to the negatively charged 1 have been discussed.
K3Sb和Ru3(CO)12在2,2,2-cryptand的乙二胺(en)中的氧化还原反应生成深度还原的[Ru6(μ6-Sb)(μ2-CO)2(CO)16]3-(1),其中前所未有的船状Ru6簇单元首次嵌入了μ6-Sb。本文讨论了从电中性{Ru6(μ5-Sb)(μ2-H)3(CO)18SbPh3}(2)到带负电的1的结构和成键演化。
{"title":"[Ru6(μ6-Sb)(CO)18]3-: Deeply Reduced Metal Carbonyl Cluster Embedded with Naked μ6-Sb","authors":"Cheng Ding, Xian Xu, qian qin, Jingen Ding, Li Xu","doi":"10.1039/d6dt00002a","DOIUrl":"https://doi.org/10.1039/d6dt00002a","url":null,"abstract":"The redox reaction of K3Sb and Ru3(CO)12 in the ethylenediamine (en) of 2,2,2-cryptand to produce the deeply reduced [Ru6(μ6-Sb)(μ2-CO)2(CO)16]3- (1) wherein the unprecedented boat-like Ru6 cluster unit is embedded with μ6-Sb for the first time. Structural and bonding evolution from the reported electroneutral {Ru6(μ5-Sb)(μ2-H)3(CO)18SbPh3} (2) to the negatively charged 1 have been discussed.","PeriodicalId":71,"journal":{"name":"Dalton Transactions","volume":"17 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2026-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146116144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NIR-Responsive Upconversion Nanoplatforms: an Anionic Drug Carrier for ROS Amplification Induced by β-amyloid Fibrils nir响应上转换纳米平台:β-淀粉样原纤维诱导ROS扩增的阴离子药物载体
IF 4 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2026-02-04 DOI: 10.1039/d5dt03121d
Xiaofeng Jia, Yijia Guan, Weijie Cao, Xiaoshuo Zhang, Huazhen Duan, Hui Guo, Huichang Chen, Binbin Wang, Tao Li, Jianguo Liao
Alzheimer’s disease (AD), marked by the misfolding/aggregation of β-amyloid (Aβ), is a major global health challenge. Polyoxometalates (POMs), as anionic therapeutic agents, exhibit potential in depolymerizing Aβ fibrils, inhibiting Aβ fibrillation, and photocatalyst. To achieve targeted reactive oxygen species (ROS) amplification, we developed a chitosan-modified near-infrared (NIR)-responsive upconversion nanoplatform, UCNPs(Tm/Er)@SiO2@GPS@CH, as a targeted carrier for POMs. The nanoplatform was constructed by sequentially modifying upconversion nanoparticles (UCNPs) with a silica layer, 3-glycidoxypropyltrimethoxysilane (GPS, as a linker), and chitosan (CH, a cationic biomacromolecule). The cationic CH layer enabled efficient loading of anionic POMs through electrostatic interactions with an optimal POMs loading capacity of 415.41 μg/mg that positively correlated with CH modification levels. Under NIR irradiation, the nanoplatform triggered a photodynamic effect with abundant ROS. Notably, compared with the control group and Aβ monomer group, the ROS generation in the Aβ fibril group was approximately doubled, which further enhanced the targeted therapeutic efficacy of system. By integrating NIR responsiveness, cationic chitosan, targeted ROS generation, and low systemic toxicity, the nanoplatform provides a novel strategy for the photooxidative treatment of AD and offers insights into the design of chitosan-modified upconversion nanoparticles-based drug carrier systems.
以β-淀粉样蛋白(a β)错误折叠/聚集为特征的阿尔茨海默病(AD)是一项重大的全球健康挑战。多金属氧酸盐(pom)作为阴离子治疗剂,在解聚Aβ纤维、抑制Aβ纤颤和光触媒方面表现出潜在的作用。为了实现靶向活性氧(ROS)扩增,我们开发了一种壳聚糖修饰的近红外(NIR)响应上转换纳米平台UCNPs(Tm/Er)@SiO2@GPS@ ch,作为POMs的靶向载体。该纳米平台由二氧化硅层、3-甘氧基氧丙基三甲氧基硅烷(GPS,作为连接物)和壳聚糖(CH,一种阳离子生物大分子)依次修饰上转化纳米粒子(UCNPs)构建而成。阳离子CH层可通过静电相互作用有效负载阴离子POMs,最佳POMs负载容量为415.41 μg/mg,与CH修饰水平呈正相关。在近红外照射下,纳米平台引发了大量ROS的光动力效应。值得注意的是,与对照组和Aβ单体组相比,Aβ纤维组的ROS生成量大约增加了一倍,进一步增强了系统的靶向治疗效果。通过整合近红外响应性、阳离子壳聚糖、靶向ROS生成和低系统毒性,纳米平台为AD的光氧化治疗提供了一种新的策略,并为壳聚糖修饰的上转化纳米颗粒为基础的药物载体系统的设计提供了见解。
{"title":"NIR-Responsive Upconversion Nanoplatforms: an Anionic Drug Carrier for ROS Amplification Induced by β-amyloid Fibrils","authors":"Xiaofeng Jia, Yijia Guan, Weijie Cao, Xiaoshuo Zhang, Huazhen Duan, Hui Guo, Huichang Chen, Binbin Wang, Tao Li, Jianguo Liao","doi":"10.1039/d5dt03121d","DOIUrl":"https://doi.org/10.1039/d5dt03121d","url":null,"abstract":"Alzheimer’s disease (AD), marked by the misfolding/aggregation of β-amyloid (Aβ), is a major global health challenge. Polyoxometalates (POMs), as anionic therapeutic agents, exhibit potential in depolymerizing Aβ fibrils, inhibiting Aβ fibrillation, and photocatalyst. To achieve targeted reactive oxygen species (ROS) amplification, we developed a chitosan-modified near-infrared (NIR)-responsive upconversion nanoplatform, UCNPs(Tm/Er)@SiO2@GPS@CH, as a targeted carrier for POMs. The nanoplatform was constructed by sequentially modifying upconversion nanoparticles (UCNPs) with a silica layer, 3-glycidoxypropyltrimethoxysilane (GPS, as a linker), and chitosan (CH, a cationic biomacromolecule). The cationic CH layer enabled efficient loading of anionic POMs through electrostatic interactions with an optimal POMs loading capacity of 415.41 μg/mg that positively correlated with CH modification levels. Under NIR irradiation, the nanoplatform triggered a photodynamic effect with abundant ROS. Notably, compared with the control group and Aβ monomer group, the ROS generation in the Aβ fibril group was approximately doubled, which further enhanced the targeted therapeutic efficacy of system. By integrating NIR responsiveness, cationic chitosan, targeted ROS generation, and low systemic toxicity, the nanoplatform provides a novel strategy for the photooxidative treatment of AD and offers insights into the design of chitosan-modified upconversion nanoparticles-based drug carrier systems.","PeriodicalId":71,"journal":{"name":"Dalton Transactions","volume":"1 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2026-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146116128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis, structural characterization and properties of a series of heteropolyoxomolybdates: [AlMo6(OH)6O18]3−, [GeMo12O40]4−, [GeMo6O22(Hmal)3]7−, [SiMo12O40]4−, and [TeMo6O24]6− [AlMo6(OH)6O18]3−、[GeMo12O40]4−、[GeMo6O22(Hmal)3]7−、[SiMo12O40]4−和[TeMo6O24]6−等一系列杂多氧钼酸盐的合成、结构表征和性能
IF 4 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Pub Date : 2026-02-04 DOI: 10.1039/d5dt03064a
D. Kuzman, V. Damjanović, J. Toplak, G. Medak, I. Halasz, T. Hrenar, M. Cindrić, V. Vrdoljak
Eight heteropolyoxomolybdates were synthesized and characterized, comprising three Anderson-type compounds [Co(ox)(NH<small><sub>3</sub></small>)<small><sub>4</sub></small>]<small><sub>3</sub></small>[AlMo<small><sub>6</sub></small>(OH)<small><sub>6</sub></small>O<small><sub>18</sub></small>]·7H<small><sub>2</sub></small>O (<strong>1</strong>), [Co(ox)(NH<small><sub>3</sub></small>)<small><sub>4</sub></small>]<small><sub>6</sub></small>[TeMo<small><sub>6</sub></small>O<small><sub>24</sub></small>]·16H<small><sub>2</sub></small>O (<strong>2</strong>), and Na<small><sub>2</sub></small>[Co(ox)(en)<small><sub>2</sub></small>]<small><sub>4</sub></small>[TeMo<small><sub>6</sub></small>O<small><sub>24</sub></small>]·16H<small><sub>2</sub></small>O (<strong>3</strong>), four Keggin-type compounds [Co(ox)(NH<small><sub>3</sub></small>)<small><sub>4</sub></small>]<small><sub>4</sub></small>[GeMo<small><sub>12</sub></small>O<small><sub>40</sub></small>]·6H<small><sub>2</sub></small>O (<strong>4</strong>), [Co(ox)(NH<small><sub>3</sub></small>)<small><sub>4</sub></small>]<small><sub>4</sub></small>[SiMo<small><sub>12</sub></small>O<small><sub>40</sub></small>]·6H<small><sub>2</sub></small>O (<strong>5</strong>), [Co(ox)(en)<small><sub>2</sub></small>]<small><sub>4</sub></small>[GeMo<small><sub>12</sub></small>O<small><sub>40</sub></small>]·12H<small><sub>2</sub></small>O (<strong>6</strong>), and [Co(ox)(en)<small><sub>2</sub></small>]<small><sub>4</sub></small>[SiMo<small><sub>12</sub></small>O<small><sub>40</sub></small>]·12H<small><sub>2</sub></small>O (<strong>7</strong>), as well as one coordination polymer Na<small><sub>4</sub></small>[Co(ox)(NH<small><sub>3</sub></small>)<small><sub>4</sub></small>]<small><sub>3</sub></small>[GeMo<small><sub>6</sub></small>O<small><sub>22</sub></small>(Hmal)<small><sub>3</sub></small>]·7.75H<small><sub>2</sub></small>O (<strong>8</strong>) featuring an extensive three-dimensional coordination framework. Additionally, two reaction intermediates, [{Co(ox)(NH<small><sub>3</sub></small>)<small><sub>4</sub></small>}<small><sub>2</sub></small>Na<small><sub>2</sub></small>(H<small><sub>2</sub></small>O)<small><sub>6</sub></small>{H<small><sub>4</sub></small>Mo<small><sub>8</sub></small>O<small><sub>28</sub></small>}]·4H<small><sub>2</sub></small>O (<strong>1a</strong>) and [Co(ox)(NH<small><sub>3</sub></small>)<small><sub>4</sub></small>]<small><sub>2</sub></small>[Al(mal)<small><sub>2</sub></small>(H<small><sub>2</sub></small>O)<small><sub>2</sub></small>]·Hmal·2H<small><sub>2</sub></small>O (<strong>1b</strong>), were also isolated. Compounds [Co(NH<small><sub>3</sub></small>)<small><sub>6</sub></small>][Al(mal)<small><sub>2</sub></small>(H<small><sub>2</sub></small>O)<small><sub>2</sub></small>](NO<small><sub>3</sub></small>)<small><sub>2</sub></small>·H<small><sub>2</sub></small>O (<strong>9</strong>) and [Co(en)<small><sub>3</sub></small>]<small><sub>2</sub></small>[Mo<small><sub>8</sub></small>O<small><sub>26</sub></sm
合成并表征了8种杂多氧钼酸盐,包括3种anderson型化合物[Co(ox)(NH3)4]3[AlMo6(OH)6O18]·7H2O(1)、[Co(ox)(NH3)4]6[TeMo6O24]·16H2O(2)和Na2[Co(ox)(en)2]4[gmo12o40]·6H2O(4)、[Co(ox)(NH3)4]4[SiMo12O40]·6H2O(5)、[Co(ox)(en)2]4[gmo12o40]·12H2O(6)和[Co(ox)(en)2]4[SiMo12O40]·12H2O(7)。以及一种配位聚合物Na4[Co(ox)(NH3)4]3[GeMo6O22(Hmal)3]·7.75H2O(8),具有广泛的三维配位框架。此外,还分离到了两个反应中间体[{Co(ox)(NH3)4}2Na2(H2O)6{H4Mo8O28}]·4H2O (1a)和[Co(ox)(NH3)4]2[Al(mal)2(H2O)2]·Hmal·2H2O (1b)。以Al3+为杂原子和络合阳离子[Co(NH3)6]3+或[Co(en)3]3+反应得到的产物只有[Co(NH3)6][Al(mal)2(H2O)2](NO3)2·H2O(9)和[Co(en)3]2[Mo8O26(H2O)2]Cl2·6H2O(10)。所有化合物都是通过水热合成和机械化学方法制备的,然后进行蒸汽辅助老化。用拉曼光谱原位监测了在AlCl3或GeO2存在下钼酸钠与[Co(ox)(NH3)4]NO3·H2O的反应。最初的转化包括钼酸钠和丙二酸之间的快速反应,产生新的物种,随后与其他混合物成分反应。考察了化合物1、2、4和5在有和无双氧水的可见光照射下降解红花红T染料的光催化活性。化合物4和5的活性最高。为了研究驱动结晶过程的机制,我们在室温下监测了非晶态中间体在水浆中向最终结晶产物的转变动力学。我们采用了非原位粉末x射线衍射(PXRD),这是一种实时观察结构变化的技术。得到的PXRD数据产生了复杂的多维数据集(数据张量),使用二阶张量分解方法,主成分分析(PCA)进行分析。
{"title":"Synthesis, structural characterization and properties of a series of heteropolyoxomolybdates: [AlMo6(OH)6O18]3−, [GeMo12O40]4−, [GeMo6O22(Hmal)3]7−, [SiMo12O40]4−, and [TeMo6O24]6−","authors":"D. Kuzman, V. Damjanović, J. Toplak, G. Medak, I. Halasz, T. Hrenar, M. Cindrić, V. Vrdoljak","doi":"10.1039/d5dt03064a","DOIUrl":"https://doi.org/10.1039/d5dt03064a","url":null,"abstract":"Eight heteropolyoxomolybdates were synthesized and characterized, comprising three Anderson-type compounds [Co(ox)(NH&lt;small&gt;&lt;sub&gt;3&lt;/sub&gt;&lt;/small&gt;)&lt;small&gt;&lt;sub&gt;4&lt;/sub&gt;&lt;/small&gt;]&lt;small&gt;&lt;sub&gt;3&lt;/sub&gt;&lt;/small&gt;[AlMo&lt;small&gt;&lt;sub&gt;6&lt;/sub&gt;&lt;/small&gt;(OH)&lt;small&gt;&lt;sub&gt;6&lt;/sub&gt;&lt;/small&gt;O&lt;small&gt;&lt;sub&gt;18&lt;/sub&gt;&lt;/small&gt;]·7H&lt;small&gt;&lt;sub&gt;2&lt;/sub&gt;&lt;/small&gt;O (&lt;strong&gt;1&lt;/strong&gt;), [Co(ox)(NH&lt;small&gt;&lt;sub&gt;3&lt;/sub&gt;&lt;/small&gt;)&lt;small&gt;&lt;sub&gt;4&lt;/sub&gt;&lt;/small&gt;]&lt;small&gt;&lt;sub&gt;6&lt;/sub&gt;&lt;/small&gt;[TeMo&lt;small&gt;&lt;sub&gt;6&lt;/sub&gt;&lt;/small&gt;O&lt;small&gt;&lt;sub&gt;24&lt;/sub&gt;&lt;/small&gt;]·16H&lt;small&gt;&lt;sub&gt;2&lt;/sub&gt;&lt;/small&gt;O (&lt;strong&gt;2&lt;/strong&gt;), and Na&lt;small&gt;&lt;sub&gt;2&lt;/sub&gt;&lt;/small&gt;[Co(ox)(en)&lt;small&gt;&lt;sub&gt;2&lt;/sub&gt;&lt;/small&gt;]&lt;small&gt;&lt;sub&gt;4&lt;/sub&gt;&lt;/small&gt;[TeMo&lt;small&gt;&lt;sub&gt;6&lt;/sub&gt;&lt;/small&gt;O&lt;small&gt;&lt;sub&gt;24&lt;/sub&gt;&lt;/small&gt;]·16H&lt;small&gt;&lt;sub&gt;2&lt;/sub&gt;&lt;/small&gt;O (&lt;strong&gt;3&lt;/strong&gt;), four Keggin-type compounds [Co(ox)(NH&lt;small&gt;&lt;sub&gt;3&lt;/sub&gt;&lt;/small&gt;)&lt;small&gt;&lt;sub&gt;4&lt;/sub&gt;&lt;/small&gt;]&lt;small&gt;&lt;sub&gt;4&lt;/sub&gt;&lt;/small&gt;[GeMo&lt;small&gt;&lt;sub&gt;12&lt;/sub&gt;&lt;/small&gt;O&lt;small&gt;&lt;sub&gt;40&lt;/sub&gt;&lt;/small&gt;]·6H&lt;small&gt;&lt;sub&gt;2&lt;/sub&gt;&lt;/small&gt;O (&lt;strong&gt;4&lt;/strong&gt;), [Co(ox)(NH&lt;small&gt;&lt;sub&gt;3&lt;/sub&gt;&lt;/small&gt;)&lt;small&gt;&lt;sub&gt;4&lt;/sub&gt;&lt;/small&gt;]&lt;small&gt;&lt;sub&gt;4&lt;/sub&gt;&lt;/small&gt;[SiMo&lt;small&gt;&lt;sub&gt;12&lt;/sub&gt;&lt;/small&gt;O&lt;small&gt;&lt;sub&gt;40&lt;/sub&gt;&lt;/small&gt;]·6H&lt;small&gt;&lt;sub&gt;2&lt;/sub&gt;&lt;/small&gt;O (&lt;strong&gt;5&lt;/strong&gt;), [Co(ox)(en)&lt;small&gt;&lt;sub&gt;2&lt;/sub&gt;&lt;/small&gt;]&lt;small&gt;&lt;sub&gt;4&lt;/sub&gt;&lt;/small&gt;[GeMo&lt;small&gt;&lt;sub&gt;12&lt;/sub&gt;&lt;/small&gt;O&lt;small&gt;&lt;sub&gt;40&lt;/sub&gt;&lt;/small&gt;]·12H&lt;small&gt;&lt;sub&gt;2&lt;/sub&gt;&lt;/small&gt;O (&lt;strong&gt;6&lt;/strong&gt;), and [Co(ox)(en)&lt;small&gt;&lt;sub&gt;2&lt;/sub&gt;&lt;/small&gt;]&lt;small&gt;&lt;sub&gt;4&lt;/sub&gt;&lt;/small&gt;[SiMo&lt;small&gt;&lt;sub&gt;12&lt;/sub&gt;&lt;/small&gt;O&lt;small&gt;&lt;sub&gt;40&lt;/sub&gt;&lt;/small&gt;]·12H&lt;small&gt;&lt;sub&gt;2&lt;/sub&gt;&lt;/small&gt;O (&lt;strong&gt;7&lt;/strong&gt;), as well as one coordination polymer Na&lt;small&gt;&lt;sub&gt;4&lt;/sub&gt;&lt;/small&gt;[Co(ox)(NH&lt;small&gt;&lt;sub&gt;3&lt;/sub&gt;&lt;/small&gt;)&lt;small&gt;&lt;sub&gt;4&lt;/sub&gt;&lt;/small&gt;]&lt;small&gt;&lt;sub&gt;3&lt;/sub&gt;&lt;/small&gt;[GeMo&lt;small&gt;&lt;sub&gt;6&lt;/sub&gt;&lt;/small&gt;O&lt;small&gt;&lt;sub&gt;22&lt;/sub&gt;&lt;/small&gt;(Hmal)&lt;small&gt;&lt;sub&gt;3&lt;/sub&gt;&lt;/small&gt;]·7.75H&lt;small&gt;&lt;sub&gt;2&lt;/sub&gt;&lt;/small&gt;O (&lt;strong&gt;8&lt;/strong&gt;) featuring an extensive three-dimensional coordination framework. Additionally, two reaction intermediates, [{Co(ox)(NH&lt;small&gt;&lt;sub&gt;3&lt;/sub&gt;&lt;/small&gt;)&lt;small&gt;&lt;sub&gt;4&lt;/sub&gt;&lt;/small&gt;}&lt;small&gt;&lt;sub&gt;2&lt;/sub&gt;&lt;/small&gt;Na&lt;small&gt;&lt;sub&gt;2&lt;/sub&gt;&lt;/small&gt;(H&lt;small&gt;&lt;sub&gt;2&lt;/sub&gt;&lt;/small&gt;O)&lt;small&gt;&lt;sub&gt;6&lt;/sub&gt;&lt;/small&gt;{H&lt;small&gt;&lt;sub&gt;4&lt;/sub&gt;&lt;/small&gt;Mo&lt;small&gt;&lt;sub&gt;8&lt;/sub&gt;&lt;/small&gt;O&lt;small&gt;&lt;sub&gt;28&lt;/sub&gt;&lt;/small&gt;}]·4H&lt;small&gt;&lt;sub&gt;2&lt;/sub&gt;&lt;/small&gt;O (&lt;strong&gt;1a&lt;/strong&gt;) and [Co(ox)(NH&lt;small&gt;&lt;sub&gt;3&lt;/sub&gt;&lt;/small&gt;)&lt;small&gt;&lt;sub&gt;4&lt;/sub&gt;&lt;/small&gt;]&lt;small&gt;&lt;sub&gt;2&lt;/sub&gt;&lt;/small&gt;[Al(mal)&lt;small&gt;&lt;sub&gt;2&lt;/sub&gt;&lt;/small&gt;(H&lt;small&gt;&lt;sub&gt;2&lt;/sub&gt;&lt;/small&gt;O)&lt;small&gt;&lt;sub&gt;2&lt;/sub&gt;&lt;/small&gt;]·Hmal·2H&lt;small&gt;&lt;sub&gt;2&lt;/sub&gt;&lt;/small&gt;O (&lt;strong&gt;1b&lt;/strong&gt;), were also isolated. Compounds [Co(NH&lt;small&gt;&lt;sub&gt;3&lt;/sub&gt;&lt;/small&gt;)&lt;small&gt;&lt;sub&gt;6&lt;/sub&gt;&lt;/small&gt;][Al(mal)&lt;small&gt;&lt;sub&gt;2&lt;/sub&gt;&lt;/small&gt;(H&lt;small&gt;&lt;sub&gt;2&lt;/sub&gt;&lt;/small&gt;O)&lt;small&gt;&lt;sub&gt;2&lt;/sub&gt;&lt;/small&gt;](NO&lt;small&gt;&lt;sub&gt;3&lt;/sub&gt;&lt;/small&gt;)&lt;small&gt;&lt;sub&gt;2&lt;/sub&gt;&lt;/small&gt;·H&lt;small&gt;&lt;sub&gt;2&lt;/sub&gt;&lt;/small&gt;O (&lt;strong&gt;9&lt;/strong&gt;) and [Co(en)&lt;small&gt;&lt;sub&gt;3&lt;/sub&gt;&lt;/small&gt;]&lt;small&gt;&lt;sub&gt;2&lt;/sub&gt;&lt;/small&gt;[Mo&lt;small&gt;&lt;sub&gt;8&lt;/sub&gt;&lt;/small&gt;O&lt;small&gt;&lt;sub&gt;26&lt;/sub&gt;&lt;/sm","PeriodicalId":71,"journal":{"name":"Dalton Transactions","volume":"46 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2026-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146116061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Dalton Transactions
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1