{"title":"Coupled model for electro-osmosis consolidation and ion transport considering chemical osmosis in saturated clay soils","authors":"Shangqi Ge, Wenhao Jiang, Ji-Peng Wang, Guohui Feng, Lingwei Zheng, Xinyu Xie","doi":"10.1002/nag.3802","DOIUrl":null,"url":null,"abstract":"<p>The electro-osmosis approach efficiently facilitates the rapid dewatering of soil with high water content and contributes to reducing contaminant levels within the clay soil. However, the changes of chemical field caused by ion transport in the clay soil during electro-osmosis process will also influence the clay soil consolidation effect. Existing theories predominantly tend to disregard this crucial physical process and its resultant effects, thereby restraining a comprehensive analysis of electro-osmosis consolidation (EOC) behavior under intricate chemical conditions. This study introduces a concise model of EOC and ion transport considering chemical osmosis. The model considers the nonlinear variation of clay soil parameters such as compressibility, permeability, and effective diffusion coefficients, along with the interaction between EOC and ion transport. Meanwhile, the correctness of the model is verified from different aspects such as theoretical derivation and model comparison. Based on the proposed model, the impacts of the variation in electrical field intensity and chemical concentration on the coupled behaviors between EOC and ion transport are systematically investigated, with and without incorporating nonlinear consolidation characteristics. The results show that diffusion and electro-migration exhibit a more pronounced effect on ion transport during EOC. Simultaneously, with the increase of ion concentration in clay soil pore solution, the effects of chemical osmosis become increasingly apparent, thereby enhancing clay soil settlement.</p>","PeriodicalId":13786,"journal":{"name":"International Journal for Numerical and Analytical Methods in Geomechanics","volume":"48 14","pages":"3455-3474"},"PeriodicalIF":3.4000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical and Analytical Methods in Geomechanics","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nag.3802","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The electro-osmosis approach efficiently facilitates the rapid dewatering of soil with high water content and contributes to reducing contaminant levels within the clay soil. However, the changes of chemical field caused by ion transport in the clay soil during electro-osmosis process will also influence the clay soil consolidation effect. Existing theories predominantly tend to disregard this crucial physical process and its resultant effects, thereby restraining a comprehensive analysis of electro-osmosis consolidation (EOC) behavior under intricate chemical conditions. This study introduces a concise model of EOC and ion transport considering chemical osmosis. The model considers the nonlinear variation of clay soil parameters such as compressibility, permeability, and effective diffusion coefficients, along with the interaction between EOC and ion transport. Meanwhile, the correctness of the model is verified from different aspects such as theoretical derivation and model comparison. Based on the proposed model, the impacts of the variation in electrical field intensity and chemical concentration on the coupled behaviors between EOC and ion transport are systematically investigated, with and without incorporating nonlinear consolidation characteristics. The results show that diffusion and electro-migration exhibit a more pronounced effect on ion transport during EOC. Simultaneously, with the increase of ion concentration in clay soil pore solution, the effects of chemical osmosis become increasingly apparent, thereby enhancing clay soil settlement.
期刊介绍:
The journal welcomes manuscripts that substantially contribute to the understanding of the complex mechanical behaviour of geomaterials (soils, rocks, concrete, ice, snow, and powders), through innovative experimental techniques, and/or through the development of novel numerical or hybrid experimental/numerical modelling concepts in geomechanics. Topics of interest include instabilities and localization, interface and surface phenomena, fracture and failure, multi-physics and other time-dependent phenomena, micromechanics and multi-scale methods, and inverse analysis and stochastic methods. Papers related to energy and environmental issues are particularly welcome. The illustration of the proposed methods and techniques to engineering problems is encouraged. However, manuscripts dealing with applications of existing methods, or proposing incremental improvements to existing methods – in particular marginal extensions of existing analytical solutions or numerical methods – will not be considered for review.