Fast Finite-Time Observer-Based Event-Triggered Consensus Control for Uncertain Nonlinear Multiagent Systems with Full-State Constraints

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Entropy Pub Date : 2024-06-29 DOI:10.3390/e26070559
Kewei Zhou, Xin Wang
{"title":"Fast Finite-Time Observer-Based Event-Triggered Consensus Control for Uncertain Nonlinear Multiagent Systems with Full-State Constraints","authors":"Kewei Zhou, Xin Wang","doi":"10.3390/e26070559","DOIUrl":null,"url":null,"abstract":"This article studies a class of uncertain nonlinear multiagent systems (MASs) with state restrictions. RBFNNs, or radial basis function neural networks, are utilized to estimate the uncertainty of the system. To approximate the unknown states and disturbances, the state observer and disturbance observer are proposed to resolve those issues. Moreover, a fast finite-time consensus control technique is suggested in order to accomplish fast finite-time stability without going against the full-state requirements. It is demonstrated that every signal could be stable and boundless, and an event-triggered controller is considered for the saving of resources. Ultimately, the simulated example demonstrates the validity of the developed approach.","PeriodicalId":11694,"journal":{"name":"Entropy","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e26070559","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This article studies a class of uncertain nonlinear multiagent systems (MASs) with state restrictions. RBFNNs, or radial basis function neural networks, are utilized to estimate the uncertainty of the system. To approximate the unknown states and disturbances, the state observer and disturbance observer are proposed to resolve those issues. Moreover, a fast finite-time consensus control technique is suggested in order to accomplish fast finite-time stability without going against the full-state requirements. It is demonstrated that every signal could be stable and boundless, and an event-triggered controller is considered for the saving of resources. Ultimately, the simulated example demonstrates the validity of the developed approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
针对具有全状态约束条件的不确定非线性多代理系统的基于事件触发的快速有限时间观测器共识控制
本文研究了一类具有状态限制的不确定非线性多代理系统(MAS)。利用 RBFNN(即径向基函数神经网络)来估计系统的不确定性。为了逼近未知状态和扰动,文章提出了状态观测器和扰动观测器来解决这些问题。此外,还提出了一种快速有限时间共识控制技术,以便在不违背全状态要求的情况下实现快速有限时间稳定性。结果表明,每个信号都是稳定的、无边界的,并考虑采用事件触发控制器以节省资源。最终,模拟实例证明了所开发方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
期刊最新文献
Understanding Higher-Order Interactions in Information Space Practical Performance Analysis of MDI-QKD with Orbital Angular Momentum on UAV Relay Platform Kramers–Wannier Duality and Random-Bond Ising Model Non-Coding RNAs Extended Omnigenic Module of Cancers Contrast Information Dynamics: A Novel Information Measure for Cognitive Modelling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1