Diffusion-Based Causal Representation Learning

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Entropy Pub Date : 2024-06-28 DOI:10.3390/e26070556
Amir Mohammad Karimi Mamaghan, Andrea Dittadi, Stefan Bauer, Karl Henrik Johansson, Francesco Quinzan
{"title":"Diffusion-Based Causal Representation Learning","authors":"Amir Mohammad Karimi Mamaghan, Andrea Dittadi, Stefan Bauer, Karl Henrik Johansson, Francesco Quinzan","doi":"10.3390/e26070556","DOIUrl":null,"url":null,"abstract":"Causal reasoning can be considered a cornerstone of intelligent systems. Having access to an underlying causal graph comes with the promise of cause–effect estimation and the identification of efficient and safe interventions. However, learning causal representations remains a major challenge, due to the complexity of many real-world systems. Previous works on causal representation learning have mostly focused on Variational Auto-Encoders (VAEs). These methods only provide representations from a point estimate, and they are less effective at handling high dimensions. To overcome these problems, we propose a Diffusion-based Causal Representation Learning (DCRL) framework which uses diffusion-based representations for causal discovery in the latent space. DCRL provides access to both single-dimensional and infinite-dimensional latent codes, which encode different levels of information. In a first proof of principle, we investigate the use of DCRL for causal representation learning in a weakly supervised setting. We further demonstrate experimentally that this approach performs comparably well in identifying the latent causal structure and causal variables.","PeriodicalId":11694,"journal":{"name":"Entropy","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e26070556","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Causal reasoning can be considered a cornerstone of intelligent systems. Having access to an underlying causal graph comes with the promise of cause–effect estimation and the identification of efficient and safe interventions. However, learning causal representations remains a major challenge, due to the complexity of many real-world systems. Previous works on causal representation learning have mostly focused on Variational Auto-Encoders (VAEs). These methods only provide representations from a point estimate, and they are less effective at handling high dimensions. To overcome these problems, we propose a Diffusion-based Causal Representation Learning (DCRL) framework which uses diffusion-based representations for causal discovery in the latent space. DCRL provides access to both single-dimensional and infinite-dimensional latent codes, which encode different levels of information. In a first proof of principle, we investigate the use of DCRL for causal representation learning in a weakly supervised setting. We further demonstrate experimentally that this approach performs comparably well in identifying the latent causal structure and causal variables.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于扩散的因果表征学习
因果推理可以说是智能系统的基石。在获得底层因果图的同时,还能对因果关系进行估计,并确定高效、安全的干预措施。然而,由于许多现实世界系统的复杂性,学习因果表征仍然是一项重大挑战。以往的因果表征学习工作大多集中在变异自动编码器(VAE)上。这些方法只能通过点估计提供表示,而且在处理高维度时效果较差。为了克服这些问题,我们提出了基于扩散的因果表征学习(DCRL)框架,该框架使用基于扩散的表征来发现潜空间中的因果关系。DCRL 可以访问单维和无限维潜在代码,它们编码不同层次的信息。在第一个原理证明中,我们研究了在弱监督环境中使用 DCRL 进行因果表征学习。我们进一步通过实验证明,这种方法在识别潜在因果结构和因果变量方面表现相当出色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
期刊最新文献
Understanding Higher-Order Interactions in Information Space Practical Performance Analysis of MDI-QKD with Orbital Angular Momentum on UAV Relay Platform Kramers–Wannier Duality and Random-Bond Ising Model Non-Coding RNAs Extended Omnigenic Module of Cancers Contrast Information Dynamics: A Novel Information Measure for Cognitive Modelling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1