Ning Sha, Xiaochun Wu, Jinpeng Wen, Jinglei Li, Chuanhuang Li
{"title":"Adaptive spatio-temporal graph convolutional network with attention mechanism for mobile edge network traffic prediction","authors":"Ning Sha, Xiaochun Wu, Jinpeng Wen, Jinglei Li, Chuanhuang Li","doi":"10.1007/s10586-024-04577-2","DOIUrl":null,"url":null,"abstract":"<p>In the current era of mobile edge networks, a significant challenge lies in overcoming the limitations posed by limited edge storage and computational resources. To address these issues, accurate network traffic prediction has emerged as a promising solution. However, due to the intricate spatial and temporal dependencies inherent in mobile edge network traffic, the prediction task remains highly challenging. Recent spatio-temporal neural network algorithms based on graph convolution have shown promising results, but they often rely on pre-defined graph structures or learned parameters. This approach neglects the dynamic nature of short-term relationships, leading to limitations in prediction accuracy. To address these limitations, we introduce Ada-ASTGCN, an innovative attention-based adaptive spatio-temporal graph convolutional network. Ada-ASTGCN dynamically derives an optimal graph structure, considering both the long-term stability and short-term bursty evolution. This allows for more precise spatio-temporal network traffic prediction. In addition, we employ an alternative training approach during optimization, replacing the traditional end-to-end training method. This alternative training approach better guides the learning direction of the model, leading to improved prediction performance. To validate the effectiveness of Ada-ASTGCN, we conducted extensive traffic prediction experiments on real-world datasets. The results demonstrate the superior performance of Ada-ASTGCN compared to existing methods, highlighting its ability to accurately predict network traffic in mobile edge networks.</p>","PeriodicalId":501576,"journal":{"name":"Cluster Computing","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10586-024-04577-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In the current era of mobile edge networks, a significant challenge lies in overcoming the limitations posed by limited edge storage and computational resources. To address these issues, accurate network traffic prediction has emerged as a promising solution. However, due to the intricate spatial and temporal dependencies inherent in mobile edge network traffic, the prediction task remains highly challenging. Recent spatio-temporal neural network algorithms based on graph convolution have shown promising results, but they often rely on pre-defined graph structures or learned parameters. This approach neglects the dynamic nature of short-term relationships, leading to limitations in prediction accuracy. To address these limitations, we introduce Ada-ASTGCN, an innovative attention-based adaptive spatio-temporal graph convolutional network. Ada-ASTGCN dynamically derives an optimal graph structure, considering both the long-term stability and short-term bursty evolution. This allows for more precise spatio-temporal network traffic prediction. In addition, we employ an alternative training approach during optimization, replacing the traditional end-to-end training method. This alternative training approach better guides the learning direction of the model, leading to improved prediction performance. To validate the effectiveness of Ada-ASTGCN, we conducted extensive traffic prediction experiments on real-world datasets. The results demonstrate the superior performance of Ada-ASTGCN compared to existing methods, highlighting its ability to accurately predict network traffic in mobile edge networks.