A scalable and power efficient MAC protocol with adaptive TDMA for M2M communication

Narender Reddy Kampelli, B. N. Bhandari
{"title":"A scalable and power efficient MAC protocol with adaptive TDMA for M2M communication","authors":"Narender Reddy Kampelli, B. N. Bhandari","doi":"10.1007/s10586-024-04681-3","DOIUrl":null,"url":null,"abstract":"<p>Machine Type Communication Devices for Machine-to-Machine (M2M) communication in 5G cellular networks have issues with scalability, quality of service (QoS), collisions, and delays in data transmission. M2M connectivity has become prevalent in the Internet of Things. The suggested MAC protocol for M2M communication using adaptive TDMA was designed to be scalable and power-efficient. To address the problems of collision, quality of service and scalability in M2M communication by presenting a Power-efficient MAC switching protocol with Adaptive Time Division Multiple Access (PMAC-ATDMA). There are three phases to this: grouping, dynamic MAC switching, and time slot allocation. Optimization Technique: The usage of the adaptive k-means algorithm with the HHO method for selecting MTC heads based on their power status and proximity to enhance network efficiency and reduce collision. Hybrid MAC Protocol Design: A dynamic switching mechanism between CSMA/CA and Carrier Sense Multiple Access/Collision Avoidance Reservation Protocol (CSMA/CARP) based on network density and device activity, aiming to optimize collision handling and energy consumption. ATDMA assigns time slots that are used for data transmission based on the size of the data and QoS requirements. Traditional TDMA’s synchronization issue is solved by using the Markov chain model; this PMAC-ATDMA is simulated using a network simulator tool. Access delay, energy, collision likelihood, and successful packet transmissions are all taken into account throughout the evaluation process.</p>","PeriodicalId":501576,"journal":{"name":"Cluster Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10586-024-04681-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Machine Type Communication Devices for Machine-to-Machine (M2M) communication in 5G cellular networks have issues with scalability, quality of service (QoS), collisions, and delays in data transmission. M2M connectivity has become prevalent in the Internet of Things. The suggested MAC protocol for M2M communication using adaptive TDMA was designed to be scalable and power-efficient. To address the problems of collision, quality of service and scalability in M2M communication by presenting a Power-efficient MAC switching protocol with Adaptive Time Division Multiple Access (PMAC-ATDMA). There are three phases to this: grouping, dynamic MAC switching, and time slot allocation. Optimization Technique: The usage of the adaptive k-means algorithm with the HHO method for selecting MTC heads based on their power status and proximity to enhance network efficiency and reduce collision. Hybrid MAC Protocol Design: A dynamic switching mechanism between CSMA/CA and Carrier Sense Multiple Access/Collision Avoidance Reservation Protocol (CSMA/CARP) based on network density and device activity, aiming to optimize collision handling and energy consumption. ATDMA assigns time slots that are used for data transmission based on the size of the data and QoS requirements. Traditional TDMA’s synchronization issue is solved by using the Markov chain model; this PMAC-ATDMA is simulated using a network simulator tool. Access delay, energy, collision likelihood, and successful packet transmissions are all taken into account throughout the evaluation process.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于 M2M 通信的具有自适应 TDMA 功能的可扩展高能效 MAC 协议
5G 蜂窝网络中用于机器对机器(M2M)通信的机器型通信设备存在可扩展性、服务质量(QoS)、碰撞和数据传输延迟等问题。M2M 连接在物联网中已变得十分普遍。建议使用自适应 TDMA 的 M2M 通信 MAC 协议旨在实现可扩展性和高能效。为了解决 M2M 通信中的碰撞、服务质量和可扩展性问题,提出了一种具有自适应时分多址(PMAC-ATDMA)的高能效 MAC 交换协议。该协议分为三个阶段:分组、动态 MAC 切换和时隙分配。优化技术:使用自适应 k-means 算法和 HHO 方法,根据功率状态和邻近程度选择 MTC 头,以提高网络效率并减少碰撞。混合 MAC 协议设计:根据网络密度和设备活动,在 CSMA/CA 和载波侦测多路访问/避免碰撞保留协议(CSMA/CARP)之间建立动态切换机制,旨在优化碰撞处理和能耗。ATDMA 根据数据大小和 QoS 要求分配用于数据传输的时隙。传统 TDMA 的同步问题通过使用马尔科夫链模型来解决;而 PMAC-ATDMA 则使用网络模拟工具进行模拟。在整个评估过程中,访问延迟、能量、碰撞可能性和数据包传输成功率都被考虑在内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quantitative and qualitative similarity measure for data clustering analysis OntoXAI: a semantic web rule language approach for explainable artificial intelligence Multi-threshold image segmentation using a boosted whale optimization: case study of breast invasive ductal carcinomas PSO-ACO-based bi-phase lightweight intrusion detection system combined with GA optimized ensemble classifiers A scalable and power efficient MAC protocol with adaptive TDMA for M2M communication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1