Hybrid metaheuristics for selective inference task offloading under time and energy constraints for real-time IoT sensing systems

Abdelkarim Ben Sada, Amar Khelloufi, Abdenacer Naouri, Huansheng Ning, Sahraoui Dhelim
{"title":"Hybrid metaheuristics for selective inference task offloading under time and energy constraints for real-time IoT sensing systems","authors":"Abdelkarim Ben Sada, Amar Khelloufi, Abdenacer Naouri, Huansheng Ning, Sahraoui Dhelim","doi":"10.1007/s10586-024-04578-1","DOIUrl":null,"url":null,"abstract":"<p>The recent widespread of AI-powered real-time applications necessitates the use of edge computing for inference task offloading. Power constrained edge devices are required to balance between processing inference tasks locally or offload to edge servers. This decision is determined according to the time constraint demanded by the real-time nature of applications, and the energy constraint dictated by the device’s power budget. This problem is further exacerbated in the case of systems leveraging multiple local inference models varying in size and accuracy. In this work, we tackle the problem of assigning inference models to inference tasks either using local inference models or by offloading to edge servers under time and energy constraints while maximizing the overall accuracy of the system. This problem is shown to be strongly NP-hard and therefore, we propose a hybrid genetic algorithm (HGSTO) to solve this problem. We leverage the speed of simulated annealing (SA) with the accuracy of genetic algorithms (GA) to develop a hybrid, fast and accurate algorithm compared with classic GA, SA and Particle Swarm Optimization (PSO). Experiment results show that HGSTO achieved on-par or higher accuracy than GA while resulting in significantly lower scheduling times compared to other schemes.</p>","PeriodicalId":501576,"journal":{"name":"Cluster Computing","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10586-024-04578-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The recent widespread of AI-powered real-time applications necessitates the use of edge computing for inference task offloading. Power constrained edge devices are required to balance between processing inference tasks locally or offload to edge servers. This decision is determined according to the time constraint demanded by the real-time nature of applications, and the energy constraint dictated by the device’s power budget. This problem is further exacerbated in the case of systems leveraging multiple local inference models varying in size and accuracy. In this work, we tackle the problem of assigning inference models to inference tasks either using local inference models or by offloading to edge servers under time and energy constraints while maximizing the overall accuracy of the system. This problem is shown to be strongly NP-hard and therefore, we propose a hybrid genetic algorithm (HGSTO) to solve this problem. We leverage the speed of simulated annealing (SA) with the accuracy of genetic algorithms (GA) to develop a hybrid, fast and accurate algorithm compared with classic GA, SA and Particle Swarm Optimization (PSO). Experiment results show that HGSTO achieved on-par or higher accuracy than GA while resulting in significantly lower scheduling times compared to other schemes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
实时物联网传感系统在时间和能量限制下选择性推理任务卸载的混合元启发式算法
最近,人工智能驱动的实时应用越来越广泛,因此有必要使用边缘计算来卸载推理任务。功率受限的边缘设备需要在本地处理推理任务或将任务卸载到边缘服务器之间取得平衡。这一决定是根据应用的实时性所要求的时间限制和设备的功率预算所决定的能耗限制来做出的。如果系统利用多个规模和精度各不相同的本地推理模型,这个问题就会进一步恶化。在这项工作中,我们要解决的问题是,在时间和能量限制下,利用本地推理模型或通过卸载到边缘服务器来为推理任务分配推理模型,同时最大限度地提高系统的整体准确性。这个问题被证明是强 NP 难,因此我们提出了一种混合遗传算法 (HGSTO) 来解决这个问题。我们利用模拟退火(SA)的速度和遗传算法(GA)的准确性,开发出一种混合、快速、准确的算法,与传统的 GA、SA 和粒子群优化(PSO)相比,具有更高的准确性。实验结果表明,与其他方案相比,HGSTO 实现了与 GA 相当或更高的精确度,同时大大缩短了调度时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quantitative and qualitative similarity measure for data clustering analysis OntoXAI: a semantic web rule language approach for explainable artificial intelligence Multi-threshold image segmentation using a boosted whale optimization: case study of breast invasive ductal carcinomas PSO-ACO-based bi-phase lightweight intrusion detection system combined with GA optimized ensemble classifiers A scalable and power efficient MAC protocol with adaptive TDMA for M2M communication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1