A ( 10 1 ¯ 0 $10\bar{1}0$ )-Orientated ZnO Single Crystal Chem-Voltaic Device Beyond Conventional Fuel Cells

IF 6.4 3区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Materials Technologies Pub Date : 2024-07-02 DOI:10.1002/admt.202400184
Xiaohua Meng, Bin Liu, Heqing Yang, Shengzhong Liu
{"title":"A (\n \n \n 10\n \n 1\n ¯\n \n 0\n \n $10\\bar{1}0$\n )-Orientated ZnO Single Crystal Chem-Voltaic Device Beyond Conventional Fuel Cells","authors":"Xiaohua Meng,&nbsp;Bin Liu,&nbsp;Heqing Yang,&nbsp;Shengzhong Liu","doi":"10.1002/admt.202400184","DOIUrl":null,"url":null,"abstract":"<p>To date, new prototype device for directly converting chemical energy into electricity is still the most important pursuit although various types of fuel cells have been developed/commercialized. In this work, a novel (<span></span><math>\n <semantics>\n <mrow>\n <mn>10</mn>\n <mover>\n <mn>1</mn>\n <mo>¯</mo>\n </mover>\n <mn>0</mn>\n </mrow>\n <annotation>$10\\bar{1}0$</annotation>\n </semantics></math>) orientated ZnO single crystal device is reported that generates electricity using the usual redox reactions. The principle of the device is similar to that of a photovoltaic device, known as a chem-voltaic device. The air-KBH<sub>4</sub> chem-voltaic device has an open-circuit voltage (<i>V</i><sub>oc</sub>) of 2.14 ± 0.007 mV and a short-circuit current (<i>I</i><sub>sc</sub>) of 1.44 ± 0.007 µA. The <i>V</i><sub>oc</sub> and <i>I</i><sub>sc</sub> increase to 2.24 mV and 2.81 µA, respectively, by preadding H<sub>2</sub>O<sub>2</sub>. A similar phenomenon is also observed when glucose is used to substitute KBH<sub>4</sub>. When KBH<sub>4</sub> or glucose solution is added to the ZnO (<span></span><math>\n <semantics>\n <mrow>\n <mn>10</mn>\n <mover>\n <mn>1</mn>\n <mo>¯</mo>\n </mover>\n <mn>0</mn>\n </mrow>\n <annotation>$10\\bar{1}0$</annotation>\n </semantics></math>) surface, it reacts with chemisorbed oxygen to produce free electrons. Due to the presence of the spontaneous electric field (<i>E</i><sub>s</sub>) in the polar [0001] azimuth of ZnO, these free electrons move along the [0001] direction, producing an electric current. So chemical energy is converted into electricity. This finding opens up research on the chem-voltaic cell.</p>","PeriodicalId":7292,"journal":{"name":"Advanced Materials Technologies","volume":"9 19","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Technologies","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admt.202400184","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

To date, new prototype device for directly converting chemical energy into electricity is still the most important pursuit although various types of fuel cells have been developed/commercialized. In this work, a novel ( 10 1 ¯ 0 $10\bar{1}0$ ) orientated ZnO single crystal device is reported that generates electricity using the usual redox reactions. The principle of the device is similar to that of a photovoltaic device, known as a chem-voltaic device. The air-KBH4 chem-voltaic device has an open-circuit voltage (Voc) of 2.14 ± 0.007 mV and a short-circuit current (Isc) of 1.44 ± 0.007 µA. The Voc and Isc increase to 2.24 mV and 2.81 µA, respectively, by preadding H2O2. A similar phenomenon is also observed when glucose is used to substitute KBH4. When KBH4 or glucose solution is added to the ZnO ( 10 1 ¯ 0 $10\bar{1}0$ ) surface, it reacts with chemisorbed oxygen to produce free electrons. Due to the presence of the spontaneous electric field (Es) in the polar [0001] azimuth of ZnO, these free electrons move along the [0001] direction, producing an electric current. So chemical energy is converted into electricity. This finding opens up research on the chem-voltaic cell.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超越传统燃料电池的 (101¯0$10\bar{1}0$) 定向氧化锌单晶化学光伏器件
迄今为止,尽管各种类型的燃料电池已经开发/商业化,但将化学能直接转化为电能的新型原型装置仍是最重要的追求。在这项工作中,报告了一种新型()取向氧化锌单晶装置,它能利用通常的氧化还原反应发电。该装置的原理类似于光伏装置,即化学光伏装置。空气-KBH4 化学光伏器件的开路电压(Voc)为 2.14 ± 0.007 mV,短路电流(Isc)为 1.44 ± 0.007 µA。预先加入 H2O2 后,Voc 和 Isc 分别增至 2.24 mV 和 2.81 µA。用葡萄糖代替 KBH4 时,也观察到类似的现象。当 KBH4 或葡萄糖溶液加入氧化锌()表面时,会与化学吸附的氧发生反应,产生自由电子。由于氧化锌极性[0001]方位角存在自发电场(Es),这些自由电子沿[0001]方向移动,产生电流。因此,化学能被转化为电能。这一发现开启了化学-光伏电池的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials Technologies
Advanced Materials Technologies Materials Science-General Materials Science
CiteScore
10.20
自引率
4.40%
发文量
566
期刊介绍: Advanced Materials Technologies Advanced Materials Technologies is the new home for all technology-related materials applications research, with particular focus on advanced device design, fabrication and integration, as well as new technologies based on novel materials. It bridges the gap between fundamental laboratory research and industry.
期刊最新文献
A Nanomechanical Transducer for Remote Signal Transmission onto the Tympanic Membrane–Playing Music on a Different Drum (Adv. Mater. Technol. 22/2024) Dual-Material Aerosol Jet Printing of Magneto-Responsive Polymers with In-Process Tailorable Composition for Small-Scale Soft Robotics (Adv. Mater. Technol. 22/2024) Masthead: (Adv. Mater. Technol. 22/2024) Realizing the High Efficiency of Type-II Superlattice Infrared Sensors Integrated Wire-Grid Polarizer via Femtosecond Laser Polishing (Adv. Mater. Technol. 22/2024) High-Throughput Microfluidic 3D Outer Blood-Retinal Barrier Model in a 96-Well Format: Analysis of Cellular Interactions and Barrier Function in Retinal Health and Disease (Adv. Mater. Technol. 22/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1