Application of Deep Neural Networks for Detecting Probable Areas of Precipitation and Thunderstorms

IF 1.4 4区 地球科学 Q4 METEOROLOGY & ATMOSPHERIC SCIENCES Russian Meteorology and Hydrology Pub Date : 2024-06-27 DOI:10.3103/s1068373924040058
V. V. Chursin, A. A. Kostornaya
{"title":"Application of Deep Neural Networks for Detecting Probable Areas of Precipitation and Thunderstorms","authors":"V. V. Chursin, A. A. Kostornaya","doi":"10.3103/s1068373924040058","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>A method for the probabilistic identification of the precipitation and thunderstorm zones using artificial neural networks (ANNs), in particular, deep neural networks is described. The vertical profiles of temperature and humidity retrieved from satellite data are used as initial data. The ANN calculations have been validated using the ground-based observations in the Siberian region.</p>","PeriodicalId":49581,"journal":{"name":"Russian Meteorology and Hydrology","volume":"39 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Meteorology and Hydrology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3103/s1068373924040058","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

A method for the probabilistic identification of the precipitation and thunderstorm zones using artificial neural networks (ANNs), in particular, deep neural networks is described. The vertical profiles of temperature and humidity retrieved from satellite data are used as initial data. The ANN calculations have been validated using the ground-based observations in the Siberian region.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
应用深度神经网络探测降水和雷暴的可能区域
摘要 介绍了一种利用人工神经网络(ANN),特别是深度神经网络对降水和雷暴区进行概率识别的方法。从卫星数据中获取的温度和湿度垂直剖面图被用作初始数据。利用西伯利亚地区的地面观测数据对人工神经网络的计算结果进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Russian Meteorology and Hydrology
Russian Meteorology and Hydrology METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
1.70
自引率
28.60%
发文量
44
审稿时长
4-8 weeks
期刊介绍: Russian Meteorology and Hydrology is a peer reviewed journal that covers topical issues of hydrometeorological science and practice: methods of forecasting weather and hydrological phenomena, climate monitoring issues, environmental pollution, space hydrometeorology, agrometeorology.
期刊最新文献
Extreme Heat Waves and Extreme Summer Seasons in European Russia Influence of the Summer Changes in Large-scale Atmospheric Circulation on the Vertical Fluxes of Heat and Moisture in Russian Landscape Zones Variational Assimilation of the SMAP Surface Soil Moisture Retrievals into an Integrated Urban Land Model Features of the Thermal Regime of the Middle Atmosphere over Western Siberia from the Data of Many-year Lidar Monitoring Analysis of the Variations in the Lightning Activity of a Hail Process (August 19, 2015, the North Caucasus)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1