Assessment of Atmospheric Ozone from Reanalysis and Ground-based Measurements in the Baikal Region

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-06-27 DOI:10.3103/s1068373924040113
A. M. Smetanina, S. A. Gromov, V. A. Obolkin, T. V. Khodzher, O. I. Khuriganova
{"title":"Assessment of Atmospheric Ozone from Reanalysis and Ground-based Measurements in the Baikal Region","authors":"A. M. Smetanina, S. A. Gromov, V. A. Obolkin, T. V. Khodzher, O. I. Khuriganova","doi":"10.3103/s1068373924040113","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The machine learning model used to predict ozone concentrations at the Listvyanka monitoring station in the Baikal region is described. The model was trained and verified using automatic ground-based gas analyzer ozone measurements. Random forest and boosting machine learning models were used. According to the ERA5 reanalysis, the mean absolute error of ozone values exceeds 16 ppb, and the mean percentage error is 80%. The respective errors in the ozone values calculated using machine learning models are 6.7 ppb and 29%. The results of forecasting are the most sensitive to the season, air temperature, and vegetation. The ozone values for 2017–2022 were simulated and analyzed using the trained model and reanalysis data.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3103/s1068373924040113","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The machine learning model used to predict ozone concentrations at the Listvyanka monitoring station in the Baikal region is described. The model was trained and verified using automatic ground-based gas analyzer ozone measurements. Random forest and boosting machine learning models were used. According to the ERA5 reanalysis, the mean absolute error of ozone values exceeds 16 ppb, and the mean percentage error is 80%. The respective errors in the ozone values calculated using machine learning models are 6.7 ppb and 29%. The results of forecasting are the most sensitive to the season, air temperature, and vegetation. The ozone values for 2017–2022 were simulated and analyzed using the trained model and reanalysis data.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
贝加尔地区大气臭氧再分析和地面测量评估
摘要 介绍了用于预测贝加尔湖地区利斯特维扬卡监测站臭氧浓度的机器学习模型。该模型利用地面气体分析仪的臭氧自动测量数据进行了训练和验证。使用了随机森林和提升机器学习模型。根据ERA5再分析,臭氧值的平均绝对误差超过16ppb,平均百分比误差为80%。使用机器学习模型计算的臭氧值误差分别为 6.7 ppb 和 29%。预测结果对季节、气温和植被最为敏感。利用训练有素的模型和再分析数据对 2017-2022 年的臭氧值进行了模拟和分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Mentorship in academic musculoskeletal radiology: perspectives from a junior faculty member. Underlying synovial sarcoma undiagnosed for more than 20 years in a patient with regional pain: a case report. Sacrococcygeal chordoma with spontaneous regression due to a large hemorrhagic component. Associations of cumulative voriconazole dose, treatment duration, and alkaline phosphatase with voriconazole-induced periostitis. Can the presence of SLAP-5 lesions be predicted by using the critical shoulder angle in traumatic anterior shoulder instability?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1