{"title":"In-situ deposition of silver nanoparticles onto glass by non-thermal plasma jet","authors":"Marzieh Abdollahi Far, Mahdi Shariat, Eshrat Sadeghzadeh Lari, Mohammad Mahdi Hassani Matin","doi":"10.1140/epjd/s10053-024-00877-9","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we employed an atmospheric-pressure non-thermal plasma jet that used silver nitrate solution as the precursor which is injected, in an aerosol state, into the plasma jet to create silver nanoparticles with the desired distribution on the glass substrate. The crystal structure and morphology of the Ag nanoparticles printed on the glass substrate were characterized by X-ray diffraction (XRD), the field emission scanning electron microscope (FESEM), and the atomic force microscope (AFM). The XRD patterns confirm Ag nanostructure deposition on the glass. FESEM results show that Ag nanoparticles’ are almost spherical in shape and by increasing the applied voltages, the Ag nanoparticles' size and density increases, and AFM images confirm the results of FESEM images. Rhodamine B with various concentrations was employed to determine the surface-enhanced Raman scattering (SERS) performance of Ag nanoparticles printed on the glass. It shows high sensitivity for Ag layers created by plasma to a threshold that even for the lower concentrations of 10<sup>−10</sup>M, Rhodamine B is still detectable. There was the optimum SERS effect at a 7 kV voltage. Also, the plasma-printed Ag layers are able to detect methylene blue, usually used as a fungicide in fish ponds and aquariums, even in low concentrations of 10<sup>−9</sup>M. The residual sulfur dioxide (SO<sub>2</sub>) of raisins was detected using a plasma-printed silver layer. This shows the application of this plasma-printed silver layer for residual SO<sub>2</sub> detection in the food industry.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":789,"journal":{"name":"The European Physical Journal D","volume":"78 7","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal D","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjd/s10053-024-00877-9","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we employed an atmospheric-pressure non-thermal plasma jet that used silver nitrate solution as the precursor which is injected, in an aerosol state, into the plasma jet to create silver nanoparticles with the desired distribution on the glass substrate. The crystal structure and morphology of the Ag nanoparticles printed on the glass substrate were characterized by X-ray diffraction (XRD), the field emission scanning electron microscope (FESEM), and the atomic force microscope (AFM). The XRD patterns confirm Ag nanostructure deposition on the glass. FESEM results show that Ag nanoparticles’ are almost spherical in shape and by increasing the applied voltages, the Ag nanoparticles' size and density increases, and AFM images confirm the results of FESEM images. Rhodamine B with various concentrations was employed to determine the surface-enhanced Raman scattering (SERS) performance of Ag nanoparticles printed on the glass. It shows high sensitivity for Ag layers created by plasma to a threshold that even for the lower concentrations of 10−10M, Rhodamine B is still detectable. There was the optimum SERS effect at a 7 kV voltage. Also, the plasma-printed Ag layers are able to detect methylene blue, usually used as a fungicide in fish ponds and aquariums, even in low concentrations of 10−9M. The residual sulfur dioxide (SO2) of raisins was detected using a plasma-printed silver layer. This shows the application of this plasma-printed silver layer for residual SO2 detection in the food industry.
期刊介绍:
The European Physical Journal D (EPJ D) presents new and original research results in:
Atomic Physics;
Molecular Physics and Chemical Physics;
Atomic and Molecular Collisions;
Clusters and Nanostructures;
Plasma Physics;
Laser Cooling and Quantum Gas;
Nonlinear Dynamics;
Optical Physics;
Quantum Optics and Quantum Information;
Ultraintense and Ultrashort Laser Fields.
The range of topics covered in these areas is extensive, from Molecular Interaction and Reactivity to Spectroscopy and Thermodynamics of Clusters, from Atomic Optics to Bose-Einstein Condensation to Femtochemistry.