In-situ synchrotron x-ray photoelectron spectroscopy study of medium-temperature baking of niobium for SRF application

A Prudnikava, Y Tamashevich, A Makarova, D Smirnov, J Knobloch
{"title":"In-situ synchrotron x-ray photoelectron spectroscopy study of medium-temperature baking of niobium for SRF application","authors":"A Prudnikava, Y Tamashevich, A Makarova, D Smirnov, J Knobloch","doi":"10.1088/1361-6668/ad4825","DOIUrl":null,"url":null,"abstract":"In order to determine optimal parameters of vacuum thermal processing of superconducting radiofrequency niobium cavities exhaustive information on the initial chemical state of niobium and its modification upon a vacuum heat treatment is required. In the present work the chemical composition of the niobium surface upon ultra-high vacuum baking at 200 <sup>∘</sup>C–400 <sup>∘</sup>C similar to ‘medium-temperature baking’ and ‘furnace baking’ of cavities is explored <italic toggle=\"yes\">in-situ</italic> by synchrotron x-ray photoelectron spectroscopy (XPS). Our findings imply that below the critical thickness of the <inline-formula>\n<tex-math><?CDATA $\\textrm{Nb}_2\\textrm{O}_5$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:msub><mml:mtext>Nb</mml:mtext><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mtext>O</mml:mtext><mml:mn>5</mml:mn></mml:msub></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"sustad4825ieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> layer (<inline-formula>\n<tex-math><?CDATA ${\\approx}1\\textrm{nm}$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mrow><mml:mo>≈</mml:mo></mml:mrow><mml:mn>1</mml:mn><mml:mtext>nm</mml:mtext></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"sustad4825ieqn2.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>) niobium starts to interact actively with surface impurities, such as carbon and phosphorus. By studying the kinetics of the native oxide reduction, the activation energy and the rate-constant relation have been determined and used for the calculation of the oxygen-concentration depth profiles. It has been established that the controlled diffusion of oxygen is realized at temperatures 200 <sup>∘</sup>C–300 <sup>∘</sup>C, and the native-oxide layer represents an oxygen source, while at 400 <sup>∘</sup>C the pentoxide is completely reduced and the doping level is determined by an ambient oxygen partial pressure. Fluorine (F to Nb atomic ratio is 0.2) after the buffered chemical polishing was found to be incorporated into the surface layer probed by XPS (<inline-formula>\n<tex-math><?CDATA ${\\approx}4.6\\,\\textrm{nm}$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mrow><mml:mo>≈</mml:mo></mml:mrow><mml:mn>4.6</mml:mn><mml:mstyle scriptlevel=\"0\"></mml:mstyle><mml:mtext>nm</mml:mtext></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"sustad4825ieqn3.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>), and its concentration increased during the low-temperature baking (F/Nb = 0.35 at 230 <sup>∘</sup>C) and depleted at higher temperatures (F/Nb = 0.11 at 400 <sup>∘</sup>C). Thus, the influence of fluorine on the performance of mid-T baked, nitrogen-doped and particularly mild-baked (120 <sup>∘</sup>C/48 h) cavities must be considered. The possible role of fluorine in the educed <inline-formula>\n<tex-math><?CDATA $\\textrm{Nb}^{+5} \\rightarrow \\textrm{Nb}^{+4}$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:msup><mml:mtext>Nb</mml:mtext><mml:mrow><mml:mo>+</mml:mo><mml:mn>5</mml:mn></mml:mrow></mml:msup><mml:mo stretchy=\"false\">→</mml:mo><mml:msup><mml:mtext>Nb</mml:mtext><mml:mrow><mml:mo>+</mml:mo><mml:mn>4</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"sustad4825ieqn4.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> reaction under the impact of an x-ray beam at room temperature and during the thermal treatment is also discussed. The range of temperature and duration parameters of the thermal treatment at which the niobium surface would not be contaminated with impurities is determined.","PeriodicalId":21985,"journal":{"name":"Superconductor Science and Technology","volume":"65 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Superconductor Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6668/ad4825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In order to determine optimal parameters of vacuum thermal processing of superconducting radiofrequency niobium cavities exhaustive information on the initial chemical state of niobium and its modification upon a vacuum heat treatment is required. In the present work the chemical composition of the niobium surface upon ultra-high vacuum baking at 200 C–400 C similar to ‘medium-temperature baking’ and ‘furnace baking’ of cavities is explored in-situ by synchrotron x-ray photoelectron spectroscopy (XPS). Our findings imply that below the critical thickness of the Nb2O5 layer ( 1nm ) niobium starts to interact actively with surface impurities, such as carbon and phosphorus. By studying the kinetics of the native oxide reduction, the activation energy and the rate-constant relation have been determined and used for the calculation of the oxygen-concentration depth profiles. It has been established that the controlled diffusion of oxygen is realized at temperatures 200 C–300 C, and the native-oxide layer represents an oxygen source, while at 400 C the pentoxide is completely reduced and the doping level is determined by an ambient oxygen partial pressure. Fluorine (F to Nb atomic ratio is 0.2) after the buffered chemical polishing was found to be incorporated into the surface layer probed by XPS ( 4.6nm ), and its concentration increased during the low-temperature baking (F/Nb = 0.35 at 230 C) and depleted at higher temperatures (F/Nb = 0.11 at 400 C). Thus, the influence of fluorine on the performance of mid-T baked, nitrogen-doped and particularly mild-baked (120 C/48 h) cavities must be considered. The possible role of fluorine in the educed Nb+5Nb+4 reaction under the impact of an x-ray beam at room temperature and during the thermal treatment is also discussed. The range of temperature and duration parameters of the thermal treatment at which the niobium surface would not be contaminated with impurities is determined.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于 SRF 的铌中温焙烧原位同步辐射 X 射线光电子能谱研究
为了确定超导射频铌腔真空热处理的最佳参数,需要详尽了解铌的初始化学状态及其在真空热处理后的变化情况。在本研究中,通过同步辐射 X 射线光电子能谱 (XPS) 实地考察了铌在 200 ∘C-400 ∘C 超高真空烘烤(类似于空腔的 "中温烘烤 "和 "熔炉烘烤")后表面的化学成分。我们的研究结果表明,在 Nb2O5 层的临界厚度(≈1 纳米)以下,铌开始与碳和磷等表面杂质发生积极的相互作用。通过研究原生氧化物还原的动力学,确定了活化能和速率常数关系,并用于计算氧浓度深度曲线。结果表明,在温度为 200 ℃-300 ℃ 时,氧气的扩散是受控的,本生氧化物层是氧源,而在 400 ℃ 时,五氧化物完全还原,掺杂水平由环境氧分压决定。在缓冲化学抛光后,发现氟(F 与 Nb 的原子比为 0.2)被纳入 XPS 探测的表面层(≈4.6nm),其浓度在低温烘烤期间增加(230 ℃ 时 F/Nb = 0.35),在较高温度下减少(400 ℃ 时 F/Nb = 0.11)。因此,必须考虑氟对中 T 烘烤、掺氮,特别是温和烘烤(120 ∘C/48 h)型腔性能的影响。此外,还讨论了氟在室温下和热处理过程中受 X 射线束影响的 Nb+5→Nb+4 反应中可能发挥的作用。确定了铌表面不会受到杂质污染的热处理温度范围和持续时间参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhanced mechanical strength and texture of (Ba,K)Fe2As2 Cu/Ag composite sheathed tapes with Nb barrier layer Natural width of the superconducting transition in epitaxial TiN films Kagome materials AV3Sb5 (A = K,Rb,Cs): pairing symmetry and pressure-tuning studies Stable implicit numerical algorithm of time-dependent Ginzburg–Landau theory coupled with thermal effect for vortex behaviors in hybrid superconductor systems From weak to strong-coupling superconductivity tuned by substrate in TiN films
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1