{"title":"Brain Age Estimation from Overnight Sleep Electroencephalography with Multi-Flow Sequence Learning","authors":"Di Zhang, Yichong She, Jinbo Sun, Yapeng Cui, Xuejuan Yang, Xiao Zeng, Wei Qin","doi":"10.2147/nss.s463495","DOIUrl":null,"url":null,"abstract":"<strong>Purpose:</strong> This study aims to improve brain age estimation by developing a novel deep learning model utilizing overnight electroencephalography (EEG) data.<br/><strong>Methods:</strong> We address limitations in current brain age prediction methods by proposing a model trained and evaluated on multiple cohort data, covering a broad age range. The model employs a one-dimensional Swin Transformer to efficiently extract complex patterns from sleep EEG signals and a convolutional neural network with attentional mechanisms to summarize sleep structural features. A multi-flow learning-based framework attentively merges these two features, employing sleep structural information to direct and augment the EEG features. A post-prediction model is designed to integrate the age-related features throughout the night. Furthermore, we propose a DecadeCE loss function to address the problem of an uneven age distribution.<br/><strong>Results:</strong> We utilized 18,767 polysomnograms (PSGs) from 13,616 subjects to develop and evaluate the proposed model. The model achieves a mean absolute error (MAE) of 4.19 and a correlation of 0.97 on the mixed-cohort test set, and an MAE of 6.18 years and a correlation of 0.78 on an independent test set. Our brain age estimation work reduced the error by more than 1 year compared to other studies that also used EEG, achieving the level of neuroimaging. The estimated brain age index demonstrated longitudinal sensitivity and exhibited a significant increase of 1.27 years in individuals with psychiatric or neurological disorders relative to healthy individuals.<br/><strong>Conclusion:</strong> The multi-flow deep learning model proposed in this study, based on overnight EEG, represents a more accurate approach for estimating brain age. The utilization of overnight sleep EEG for the prediction of brain age is both cost-effective and adept at capturing dynamic changes. These findings demonstrate the potential of EEG in predicting brain age, presenting a noninvasive and accessible method for assessing brain aging.<br/><br/><strong>Keywords:</strong> brain age, sleep polysomnography, electroencephalography, deep learning, swin transformer<br/>","PeriodicalId":18896,"journal":{"name":"Nature and Science of Sleep","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature and Science of Sleep","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/nss.s463495","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: This study aims to improve brain age estimation by developing a novel deep learning model utilizing overnight electroencephalography (EEG) data. Methods: We address limitations in current brain age prediction methods by proposing a model trained and evaluated on multiple cohort data, covering a broad age range. The model employs a one-dimensional Swin Transformer to efficiently extract complex patterns from sleep EEG signals and a convolutional neural network with attentional mechanisms to summarize sleep structural features. A multi-flow learning-based framework attentively merges these two features, employing sleep structural information to direct and augment the EEG features. A post-prediction model is designed to integrate the age-related features throughout the night. Furthermore, we propose a DecadeCE loss function to address the problem of an uneven age distribution. Results: We utilized 18,767 polysomnograms (PSGs) from 13,616 subjects to develop and evaluate the proposed model. The model achieves a mean absolute error (MAE) of 4.19 and a correlation of 0.97 on the mixed-cohort test set, and an MAE of 6.18 years and a correlation of 0.78 on an independent test set. Our brain age estimation work reduced the error by more than 1 year compared to other studies that also used EEG, achieving the level of neuroimaging. The estimated brain age index demonstrated longitudinal sensitivity and exhibited a significant increase of 1.27 years in individuals with psychiatric or neurological disorders relative to healthy individuals. Conclusion: The multi-flow deep learning model proposed in this study, based on overnight EEG, represents a more accurate approach for estimating brain age. The utilization of overnight sleep EEG for the prediction of brain age is both cost-effective and adept at capturing dynamic changes. These findings demonstrate the potential of EEG in predicting brain age, presenting a noninvasive and accessible method for assessing brain aging.
Keywords: brain age, sleep polysomnography, electroencephalography, deep learning, swin transformer
期刊介绍:
Nature and Science of Sleep is an international, peer-reviewed, open access journal covering all aspects of sleep science and sleep medicine, including the neurophysiology and functions of sleep, the genetics of sleep, sleep and society, biological rhythms, dreaming, sleep disorders and therapy, and strategies to optimize healthy sleep.
Specific topics covered in the journal include:
The functions of sleep in humans and other animals
Physiological and neurophysiological changes with sleep
The genetics of sleep and sleep differences
The neurotransmitters, receptors and pathways involved in controlling both sleep and wakefulness
Behavioral and pharmacological interventions aimed at improving sleep, and improving wakefulness
Sleep changes with development and with age
Sleep and reproduction (e.g., changes across the menstrual cycle, with pregnancy and menopause)
The science and nature of dreams
Sleep disorders
Impact of sleep and sleep disorders on health, daytime function and quality of life
Sleep problems secondary to clinical disorders
Interaction of society with sleep (e.g., consequences of shift work, occupational health, public health)
The microbiome and sleep
Chronotherapy
Impact of circadian rhythms on sleep, physiology, cognition and health
Mechanisms controlling circadian rhythms, centrally and peripherally
Impact of circadian rhythm disruptions (including night shift work, jet lag and social jet lag) on sleep, physiology, cognition and health
Behavioral and pharmacological interventions aimed at reducing adverse effects of circadian-related sleep disruption
Assessment of technologies and biomarkers for measuring sleep and/or circadian rhythms
Epigenetic markers of sleep or circadian disruption.