Organic dyes and ions selective adsorption and separation from aqueous solution using novel synthetic cross-linked-polydopamine/polyaniline nanoparticles
Mohammad Reza Gholizadeh, Vahid Haddadi-Asl, Hanie Ahmadi, Majid Moussaei
{"title":"Organic dyes and ions selective adsorption and separation from aqueous solution using novel synthetic cross-linked-polydopamine/polyaniline nanoparticles","authors":"Mohammad Reza Gholizadeh, Vahid Haddadi-Asl, Hanie Ahmadi, Majid Moussaei","doi":"10.1007/s11696-024-03575-3","DOIUrl":null,"url":null,"abstract":"<p>Mussel-inspired polydopamine nanoparticles were cross-linked using a unique water-in-water emulsion method (CPDA). Afterward, CPDA was modified with polyaniline (CPDA@PANI) in an HCl solution to enhance CPDA's adsorption capabilities. The adsorption process of two water-soluble dyes (anionic dye: methyl orange (MO) and cationic dye (methylene blue (MB)) and three ions (anions such as <span>\\(\\left( {{\\text{SO}}_{4} } \\right)^{2 - }\\)</span>, <span>\\(\\left( {{\\text{NO}}_{3} } \\right)^{ - }\\)</span> and Sn<sup>2+</sup> as cation) was studied in depth. The pH of solution, temperature, and contact time are affected when determining the quality and ion adsorption of organic dye. Pseud-first- and pseudo-second-order kinetic models were employed to suit the adsorption kinetics. The adsorption kinetic model was determined using four isothermal adsorption models: Temkin, Freundlich, Dubnin–Radushkevich, and Harkins–Jura. Regarding MO, MB, and ionic compounds, the nanoparticles' specific adsorption capacity is relatively high. The adsorption kinetics process followed the pseudo-second-order kinetics model, although the Temkin isotherm model worked better for tracking adsorption behavior than other isotherm models. Additionally, the findings demonstrated that the CPDA@PANI had a highly effective adsorption capacity of 114.4 mg g<sup>−1</sup> with a dye removal efficiency of 95.4% in an acidic medium. Also, desorption experiments were conducted using NaOH solutions at various concentrations (0.01–0.13 M), with 0.13 M NaOH achieving the maximum MO desorption efficiency (~ 84.9%). One can, therefore, conclude that CPDA@PANI nanoparticles may be a highly effective adsorbent for some anionic contaminants.</p>","PeriodicalId":513,"journal":{"name":"Chemical Papers","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Papers","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11696-024-03575-3","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Mussel-inspired polydopamine nanoparticles were cross-linked using a unique water-in-water emulsion method (CPDA). Afterward, CPDA was modified with polyaniline (CPDA@PANI) in an HCl solution to enhance CPDA's adsorption capabilities. The adsorption process of two water-soluble dyes (anionic dye: methyl orange (MO) and cationic dye (methylene blue (MB)) and three ions (anions such as \(\left( {{\text{SO}}_{4} } \right)^{2 - }\), \(\left( {{\text{NO}}_{3} } \right)^{ - }\) and Sn2+ as cation) was studied in depth. The pH of solution, temperature, and contact time are affected when determining the quality and ion adsorption of organic dye. Pseud-first- and pseudo-second-order kinetic models were employed to suit the adsorption kinetics. The adsorption kinetic model was determined using four isothermal adsorption models: Temkin, Freundlich, Dubnin–Radushkevich, and Harkins–Jura. Regarding MO, MB, and ionic compounds, the nanoparticles' specific adsorption capacity is relatively high. The adsorption kinetics process followed the pseudo-second-order kinetics model, although the Temkin isotherm model worked better for tracking adsorption behavior than other isotherm models. Additionally, the findings demonstrated that the CPDA@PANI had a highly effective adsorption capacity of 114.4 mg g−1 with a dye removal efficiency of 95.4% in an acidic medium. Also, desorption experiments were conducted using NaOH solutions at various concentrations (0.01–0.13 M), with 0.13 M NaOH achieving the maximum MO desorption efficiency (~ 84.9%). One can, therefore, conclude that CPDA@PANI nanoparticles may be a highly effective adsorbent for some anionic contaminants.
Chemical PapersChemical Engineering-General Chemical Engineering
CiteScore
3.30
自引率
4.50%
发文量
590
期刊介绍:
Chemical Papers is a peer-reviewed, international journal devoted to basic and applied chemical research. It has a broad scope covering the chemical sciences, but favors interdisciplinary research and studies that bring chemistry together with other disciplines.