Zinan Guo, Bo Hu, Shanzhi Chen, Bufang Zhang, Lei Wang
{"title":"Joint resource and trajectory optimization for video streaming in UAV-based emergency indoor-outdoor communication","authors":"Zinan Guo, Bo Hu, Shanzhi Chen, Bufang Zhang, Lei Wang","doi":"10.1007/s11235-024-01151-4","DOIUrl":null,"url":null,"abstract":"<p>Due to its ability for flexible placement, the Unmanned Aerial Vehicle (UAV) has been widely utilized as an aerial relay to transmit the video streaming data, which is particularly useful in emergency communication networks that lack the communication infrastructure. In this paper, we examine the combined resource optimization and trajectory planning for video services using dynamic adaptive streaming over HTTP (DASH) in the uplink transmission of UAV-based emergency indoor-outdoor communication networks. In detail, a rotary-wing UAV works as an aerial relay, forwarding emergency video collected by indoor users to a remote Base Station (BS). To ensure that the UAV can forward the emergency video data from disaster area with stable video quality, we formulate an optimization problem of maximizing the uplink throughput and video streaming utility for all indoor users, by jointly optimizing the 3D flight trajectory of UAV, playback rate of video, communication time as well as bandwidth allocation, subject to the UAV trajectory constraints, total available bandwidth limitation, video quality variation constraints, as well as information-causality constraints for both UAV relaying and video playing. To tackle the formulated non-convex problem, we present a joint UAV trajectory, bandwidth allocation and video utility (JTBU) algorithm. Specifically, we first decouple the original problem into two sub-issues: 3D UAV trajectory optimization subproblem and resource allocation optimization subproblem. Then the JTBU algorithm alternately optimizes the two subproblems until the convergency is reached. Finally, the numerical results confirm that the proposed algorithm had a higher video streaming utility and system throughput than the baseline methods.\n</p>","PeriodicalId":51194,"journal":{"name":"Telecommunication Systems","volume":"45 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Telecommunication Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11235-024-01151-4","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Due to its ability for flexible placement, the Unmanned Aerial Vehicle (UAV) has been widely utilized as an aerial relay to transmit the video streaming data, which is particularly useful in emergency communication networks that lack the communication infrastructure. In this paper, we examine the combined resource optimization and trajectory planning for video services using dynamic adaptive streaming over HTTP (DASH) in the uplink transmission of UAV-based emergency indoor-outdoor communication networks. In detail, a rotary-wing UAV works as an aerial relay, forwarding emergency video collected by indoor users to a remote Base Station (BS). To ensure that the UAV can forward the emergency video data from disaster area with stable video quality, we formulate an optimization problem of maximizing the uplink throughput and video streaming utility for all indoor users, by jointly optimizing the 3D flight trajectory of UAV, playback rate of video, communication time as well as bandwidth allocation, subject to the UAV trajectory constraints, total available bandwidth limitation, video quality variation constraints, as well as information-causality constraints for both UAV relaying and video playing. To tackle the formulated non-convex problem, we present a joint UAV trajectory, bandwidth allocation and video utility (JTBU) algorithm. Specifically, we first decouple the original problem into two sub-issues: 3D UAV trajectory optimization subproblem and resource allocation optimization subproblem. Then the JTBU algorithm alternately optimizes the two subproblems until the convergency is reached. Finally, the numerical results confirm that the proposed algorithm had a higher video streaming utility and system throughput than the baseline methods.
期刊介绍:
Telecommunication Systems is a journal covering all aspects of modeling, analysis, design and management of telecommunication systems. The journal publishes high quality articles dealing with the use of analytic and quantitative tools for the modeling, analysis, design and management of telecommunication systems covering:
Performance Evaluation of Wide Area and Local Networks;
Network Interconnection;
Wire, wireless, Adhoc, mobile networks;
Impact of New Services (economic and organizational impact);
Fiberoptics and photonic switching;
DSL, ADSL, cable TV and their impact;
Design and Analysis Issues in Metropolitan Area Networks;
Networking Protocols;
Dynamics and Capacity Expansion of Telecommunication Systems;
Multimedia Based Systems, Their Design Configuration and Impact;
Configuration of Distributed Systems;
Pricing for Networking and Telecommunication Services;
Performance Analysis of Local Area Networks;
Distributed Group Decision Support Systems;
Configuring Telecommunication Systems with Reliability and Availability;
Cost Benefit Analysis and Economic Impact of Telecommunication Systems;
Standardization and Regulatory Issues;
Security, Privacy and Encryption in Telecommunication Systems;
Cellular, Mobile and Satellite Based Systems.