Mengdi Li, ·Zhixing Guo, ·Chao Zhang, ·Xuexing Jiang, ·Yonghang Tai
{"title":"Multi-wavelength single-pixel non-line-of-sight imaging with a compressive sensing measurement matrix","authors":"Mengdi Li, ·Zhixing Guo, ·Chao Zhang, ·Xuexing Jiang, ·Yonghang Tai","doi":"10.1007/s00340-024-08265-2","DOIUrl":null,"url":null,"abstract":"<div><p>Non-line-of-sight (NLOS) imaging aims to reconstruct objects obscured by direct line of sight. Traditional Single-pixel Imaging (SPI) performs correlation operations on signals through the illumination pattern and intensity of a single-pixel detector. However, the reconstructed result mainly provides spatial information of objects, which limits its practical applications, including autonomous driving and smart cities for defense. In this work, leveraging active correlations-based imaging techniques, a multi-wavelength single-pixel non-line-of-sight (NLOS) reconstruction framework is proposed. By introducing compressive sensing, a Total Variation minimization (TV) RGB color space algorithm is designed for more object information reconstructions via under-sampling. The proposed approach is capable of reconstructing both the space and color information of hidden objects with fine detail under the intermediate reflector and filter settings. The experimental results demonstrate that the proposed scheme achieves a compression rate of 29% and outperforms conventional single-pixel imaging in terms of object information at low sampling rates, having potential practical applications.</p></div>","PeriodicalId":474,"journal":{"name":"Applied Physics B","volume":"130 7","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics B","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00340-024-08265-2","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Non-line-of-sight (NLOS) imaging aims to reconstruct objects obscured by direct line of sight. Traditional Single-pixel Imaging (SPI) performs correlation operations on signals through the illumination pattern and intensity of a single-pixel detector. However, the reconstructed result mainly provides spatial information of objects, which limits its practical applications, including autonomous driving and smart cities for defense. In this work, leveraging active correlations-based imaging techniques, a multi-wavelength single-pixel non-line-of-sight (NLOS) reconstruction framework is proposed. By introducing compressive sensing, a Total Variation minimization (TV) RGB color space algorithm is designed for more object information reconstructions via under-sampling. The proposed approach is capable of reconstructing both the space and color information of hidden objects with fine detail under the intermediate reflector and filter settings. The experimental results demonstrate that the proposed scheme achieves a compression rate of 29% and outperforms conventional single-pixel imaging in terms of object information at low sampling rates, having potential practical applications.
期刊介绍:
Features publication of experimental and theoretical investigations in applied physics
Offers invited reviews in addition to regular papers
Coverage includes laser physics, linear and nonlinear optics, ultrafast phenomena, photonic devices, optical and laser materials, quantum optics, laser spectroscopy of atoms, molecules and clusters, and more
94% of authors who answered a survey reported that they would definitely publish or probably publish in the journal again
Publishing essential research results in two of the most important areas of applied physics, both Applied Physics sections figure among the top most cited journals in this field.
In addition to regular papers Applied Physics B: Lasers and Optics features invited reviews. Fields of topical interest are covered by feature issues. The journal also includes a rapid communication section for the speedy publication of important and particularly interesting results.