Body-Integrated Ultrasensitive All-Textile Pressure Sensors for Skin-Inspired Artificial Sensory Systems

IF 11.1 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Small Science Pub Date : 2024-06-30 DOI:10.1002/smsc.202400026
Bingjun Wang, Yuanhong Shi, Haotian Li, Qilin Hua, Keyu Ji, Zilong Dong, Zhaowei Cui, Tianci Huang, Zhongming Chen, Ruilai Wei, Weiguo Hu, Guozhen Shen
{"title":"Body-Integrated Ultrasensitive All-Textile Pressure Sensors for Skin-Inspired Artificial Sensory Systems","authors":"Bingjun Wang, Yuanhong Shi, Haotian Li, Qilin Hua, Keyu Ji, Zilong Dong, Zhaowei Cui, Tianci Huang, Zhongming Chen, Ruilai Wei, Weiguo Hu, Guozhen Shen","doi":"10.1002/smsc.202400026","DOIUrl":null,"url":null,"abstract":"Tactile sensing plays a vital role in human somatosensory perception as it provides essential touch information necessary for interacting with the environment and accomplishing daily tasks. The progress in textile electronics has opened up opportunities for developing intelligent wearable devices that enable somatosensory perception and interaction. Herein, a skin-inspired all-textile pressure sensor (ATP) is presented that emulates the sensing and interaction functions of human skin, offering wearability, comfort, and breathability. The ATP demonstrates impressive features, including ultrahigh sensitivity (1.46 × 10<sup>6</sup> kPa<sup>−1</sup>), fast response time (1 ms), excellent stability and durability (over 2000 compression-release cycles), a low detection limit of 10 Pa, and remarkable breathability (93.2%). The multipixel array of ATPs has been proven to facilitate static and dynamic mapping of spatial pressure, as well as pressure trajectory monitoring functions. Moreover, by integrating ATP with oscillation circuits, external force stimuli can be directly encoded into digital frequency pulses that resemble human physiological signals. The frequency of output pulses increases with the applied pressure. Consequently, an ATP-based artificial sensory system is constructed for intelligent tactile perception. This work provides a simple and versatile strategy for practical applications of wearable electronics in the fields of robotics, sports science, and human–machine interfaces technologies.","PeriodicalId":29791,"journal":{"name":"Small Science","volume":"143 1","pages":""},"PeriodicalIF":11.1000,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/smsc.202400026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Tactile sensing plays a vital role in human somatosensory perception as it provides essential touch information necessary for interacting with the environment and accomplishing daily tasks. The progress in textile electronics has opened up opportunities for developing intelligent wearable devices that enable somatosensory perception and interaction. Herein, a skin-inspired all-textile pressure sensor (ATP) is presented that emulates the sensing and interaction functions of human skin, offering wearability, comfort, and breathability. The ATP demonstrates impressive features, including ultrahigh sensitivity (1.46 × 106 kPa−1), fast response time (1 ms), excellent stability and durability (over 2000 compression-release cycles), a low detection limit of 10 Pa, and remarkable breathability (93.2%). The multipixel array of ATPs has been proven to facilitate static and dynamic mapping of spatial pressure, as well as pressure trajectory monitoring functions. Moreover, by integrating ATP with oscillation circuits, external force stimuli can be directly encoded into digital frequency pulses that resemble human physiological signals. The frequency of output pulses increases with the applied pressure. Consequently, an ATP-based artificial sensory system is constructed for intelligent tactile perception. This work provides a simple and versatile strategy for practical applications of wearable electronics in the fields of robotics, sports science, and human–machine interfaces technologies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于皮肤启发式人工感觉系统的人体集成超敏感全织物压力传感器
触觉传感在人类体感知觉中发挥着至关重要的作用,因为它提供了与环境互动和完成日常任务所必需的基本触觉信息。纺织电子技术的进步为开发可实现体感感知和互动的智能可穿戴设备带来了机遇。本文介绍了一种受皮肤启发的全纺织压力传感器(ATP),它能模拟人体皮肤的传感和交互功能,具有可穿戴性、舒适性和透气性。ATP 具有令人印象深刻的特点,包括超高灵敏度(1.46 × 106 kPa-1)、快速响应时间(1 毫秒)、出色的稳定性和耐用性(超过 2000 次压缩-释放循环)、10 Pa 的低检测限以及出色的透气性(93.2%)。事实证明,多像素 ATP 阵列有助于空间压力的静态和动态映射,以及压力轨迹监测功能。此外,通过将 ATP 与振荡电路集成,可将外力刺激直接编码为类似人体生理信号的数字频率脉冲。输出脉冲的频率随施加压力的增加而增加。因此,我们构建了一个基于 ATP 的人工感觉系统,用于智能触觉感知。这项工作为可穿戴电子设备在机器人学、运动科学和人机界面技术领域的实际应用提供了一种简单而通用的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
14.00
自引率
2.40%
发文量
0
期刊介绍: Small Science is a premium multidisciplinary open access journal dedicated to publishing impactful research from all areas of nanoscience and nanotechnology. It features interdisciplinary original research and focused review articles on relevant topics. The journal covers design, characterization, mechanism, technology, and application of micro-/nanoscale structures and systems in various fields including physics, chemistry, materials science, engineering, environmental science, life science, biology, and medicine. It welcomes innovative interdisciplinary research and its readership includes professionals from academia and industry in fields such as chemistry, physics, materials science, biology, engineering, and environmental and analytical science. Small Science is indexed and abstracted in CAS, DOAJ, Clarivate Analytics, ProQuest Central, Publicly Available Content Database, Science Database, SCOPUS, and Web of Science.
期刊最新文献
Multi-Organ Microphysiological Systems Targeting Specific Organs for Recapitulating Disease Phenotypes via Organ Crosstalk Inflammatory or Reparative? Tuning Macrophage Polarization Using Anodized Anisotropic Nanoporous Titanium Implant Surfaces Ultralow Lattice Thermal Conductivity of Zintl-Phase CaAgSb Induced by Interface and Superlattice Scattering Transformative Impact of Nanocarrier-Mediated Drug Delivery: Overcoming Biological Barriers and Expanding Therapeutic Horizons Flexible Phototransistors on Paper: Scalable Fabrication of PEDOT:PSS Devices Using a Pen Plotter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1