{"title":"End-to-End Uplink Performance Analysis of Satellite-Based IoT Networks: A Stochastic Geometry Approach","authors":"Jiusi Zhou;Ruibo Wang;Basem Shihada;Mohamed-Slim Alouini","doi":"10.1109/OJCOMS.2024.3422110","DOIUrl":null,"url":null,"abstract":"With the deployment of satellite constellations, Internet-of-Things (IoT) devices in remote areas have gained access to low-cost network connectivity. In this paper, we investigate the performance of IoT devices connecting in up-link through low Earth orbit (LEO) satellites to geosynchronous equatorial orbit (GEO) links. We model the dynamic LEO satellite constellation using the stochastic geometry method and provide an analysis of end-to-end availability with low-complexity and coverage performance estimates for the mentioned link. Based on the analytical expressions derived in this research, we make a sound investigation on the impact of constellation configuration, transmission power, and the relative positions of IoT devices and GEO satellites on end-to-end performance.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10580980","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10580980/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
With the deployment of satellite constellations, Internet-of-Things (IoT) devices in remote areas have gained access to low-cost network connectivity. In this paper, we investigate the performance of IoT devices connecting in up-link through low Earth orbit (LEO) satellites to geosynchronous equatorial orbit (GEO) links. We model the dynamic LEO satellite constellation using the stochastic geometry method and provide an analysis of end-to-end availability with low-complexity and coverage performance estimates for the mentioned link. Based on the analytical expressions derived in this research, we make a sound investigation on the impact of constellation configuration, transmission power, and the relative positions of IoT devices and GEO satellites on end-to-end performance.
期刊介绍:
The IEEE Open Journal of the Communications Society (OJ-COMS) is an open access, all-electronic journal that publishes original high-quality manuscripts on advances in the state of the art of telecommunications systems and networks. The papers in IEEE OJ-COMS are included in Scopus. Submissions reporting new theoretical findings (including novel methods, concepts, and studies) and practical contributions (including experiments and development of prototypes) are welcome. Additionally, survey and tutorial articles are considered. The IEEE OJCOMS received its debut impact factor of 7.9 according to the Journal Citation Reports (JCR) 2023.
The IEEE Open Journal of the Communications Society covers science, technology, applications and standards for information organization, collection and transfer using electronic, optical and wireless channels and networks. Some specific areas covered include:
Systems and network architecture, control and management
Protocols, software, and middleware
Quality of service, reliability, and security
Modulation, detection, coding, and signaling
Switching and routing
Mobile and portable communications
Terminals and other end-user devices
Networks for content distribution and distributed computing
Communications-based distributed resources control.