Enhancing mmWave Channel Estimation: A Practical Experimentation Approach With Modeled Physical Layer Impairments Incorporated in Deep Learning Training
Randy Verdecia-Peña;Rodolfo Oliveira;José I. Alonso
{"title":"Enhancing mmWave Channel Estimation: A Practical Experimentation Approach With Modeled Physical Layer Impairments Incorporated in Deep Learning Training","authors":"Randy Verdecia-Peña;Rodolfo Oliveira;José I. Alonso","doi":"10.1109/OJCOMS.2024.3421519","DOIUrl":null,"url":null,"abstract":"This paper introduces a novel methodology for wireless channel estimation in millimeter-wave (mmWave) bands, with a primary focus on addressing diverse physical (PHY)-layer impairments, including phase noise (PN), in-phase and quadrature-phase imbalance (IQI), carrier frequency offset (CFO), and power amplifier non-linearity (PAN). The key contribution centers around the innovative approach of training a convolutional neural network (CNN) using a synthetic and labeled dataset that encompasses a wide range of wireless channel conditions. The methodology involves the synthetic generation of labeled datasets, representing various types of wireless channels and PHY-layer impairments, which are subsequently employed in the CNN training stage. The resulting model-based trained CNN demonstrates exceptional adaptability to diverse operational scenarios, showcasing its capability to operate effectively under various channel conditions. To validate the efficacy of the proposed methodology, the trained CNN is deployed in a practical wireless testbed. Experimental results underscore the superiority of the proposed channel estimation methodology across different signal-to-noise ratio (SNR) regions and delay spread channel types. The trained CNN exhibits robust performance, confirming its effectiveness in mitigating the impact of PHY-layer impairments in real-world mmWave communication environments. This research not only advances reliable channel estimation techniques for mmWave systems but also provides valuable practical assessment results, with potential applications in next-generation wireless communication networks.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10579875","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10579875/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces a novel methodology for wireless channel estimation in millimeter-wave (mmWave) bands, with a primary focus on addressing diverse physical (PHY)-layer impairments, including phase noise (PN), in-phase and quadrature-phase imbalance (IQI), carrier frequency offset (CFO), and power amplifier non-linearity (PAN). The key contribution centers around the innovative approach of training a convolutional neural network (CNN) using a synthetic and labeled dataset that encompasses a wide range of wireless channel conditions. The methodology involves the synthetic generation of labeled datasets, representing various types of wireless channels and PHY-layer impairments, which are subsequently employed in the CNN training stage. The resulting model-based trained CNN demonstrates exceptional adaptability to diverse operational scenarios, showcasing its capability to operate effectively under various channel conditions. To validate the efficacy of the proposed methodology, the trained CNN is deployed in a practical wireless testbed. Experimental results underscore the superiority of the proposed channel estimation methodology across different signal-to-noise ratio (SNR) regions and delay spread channel types. The trained CNN exhibits robust performance, confirming its effectiveness in mitigating the impact of PHY-layer impairments in real-world mmWave communication environments. This research not only advances reliable channel estimation techniques for mmWave systems but also provides valuable practical assessment results, with potential applications in next-generation wireless communication networks.
期刊介绍:
The IEEE Open Journal of the Communications Society (OJ-COMS) is an open access, all-electronic journal that publishes original high-quality manuscripts on advances in the state of the art of telecommunications systems and networks. The papers in IEEE OJ-COMS are included in Scopus. Submissions reporting new theoretical findings (including novel methods, concepts, and studies) and practical contributions (including experiments and development of prototypes) are welcome. Additionally, survey and tutorial articles are considered. The IEEE OJCOMS received its debut impact factor of 7.9 according to the Journal Citation Reports (JCR) 2023.
The IEEE Open Journal of the Communications Society covers science, technology, applications and standards for information organization, collection and transfer using electronic, optical and wireless channels and networks. Some specific areas covered include:
Systems and network architecture, control and management
Protocols, software, and middleware
Quality of service, reliability, and security
Modulation, detection, coding, and signaling
Switching and routing
Mobile and portable communications
Terminals and other end-user devices
Networks for content distribution and distributed computing
Communications-based distributed resources control.