Terminating Differentiable Tree Experts

Jonathan Thomm, Michael Hersche, Giacomo Camposampiero, Aleksandar Terzić, Bernhard Schölkopf, Abbas Rahimi
{"title":"Terminating Differentiable Tree Experts","authors":"Jonathan Thomm, Michael Hersche, Giacomo Camposampiero, Aleksandar Terzić, Bernhard Schölkopf, Abbas Rahimi","doi":"arxiv-2407.02060","DOIUrl":null,"url":null,"abstract":"We advance the recently proposed neuro-symbolic Differentiable Tree Machine,\nwhich learns tree operations using a combination of transformers and Tensor\nProduct Representations. We investigate the architecture and propose two key\ncomponents. We first remove a series of different transformer layers that are\nused in every step by introducing a mixture of experts. This results in a\nDifferentiable Tree Experts model with a constant number of parameters for any\narbitrary number of steps in the computation, compared to the previous method\nin the Differentiable Tree Machine with a linear growth. Given this flexibility\nin the number of steps, we additionally propose a new termination algorithm to\nprovide the model the power to choose how many steps to make automatically. The\nresulting Terminating Differentiable Tree Experts model sluggishly learns to\npredict the number of steps without an oracle. It can do so while maintaining\nthe learning capabilities of the model, converging to the optimal amount of\nsteps.","PeriodicalId":501033,"journal":{"name":"arXiv - CS - Symbolic Computation","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Symbolic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.02060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We advance the recently proposed neuro-symbolic Differentiable Tree Machine, which learns tree operations using a combination of transformers and Tensor Product Representations. We investigate the architecture and propose two key components. We first remove a series of different transformer layers that are used in every step by introducing a mixture of experts. This results in a Differentiable Tree Experts model with a constant number of parameters for any arbitrary number of steps in the computation, compared to the previous method in the Differentiable Tree Machine with a linear growth. Given this flexibility in the number of steps, we additionally propose a new termination algorithm to provide the model the power to choose how many steps to make automatically. The resulting Terminating Differentiable Tree Experts model sluggishly learns to predict the number of steps without an oracle. It can do so while maintaining the learning capabilities of the model, converging to the optimal amount of steps.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
终止可微分树专家
我们推进了最近提出的神经符号可微分树机,它利用变换器和张量乘积表示的组合来学习树操作。我们对该架构进行了研究,并提出了两个关键组件。首先,我们通过引入专家混合物,移除了每一步中使用的一系列不同变换器层。这就产生了可微分树专家模型,该模型在计算的任意步数下参数数量恒定,而之前的可微分树机器中的方法则是线性增长。考虑到计算步数的灵活性,我们还提出了一种新的终止算法,让模型能够自动选择计算步数。由此产生的终结可微分树专家模型可以在不使用神谕的情况下,缓慢地学习预测步数。它可以在保持模型学习能力的同时,收敛到最佳步数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthesizing Evolving Symbolic Representations for Autonomous Systems Introducing Quantification into a Hierarchical Graph Rewriting Language Towards Verified Polynomial Factorisation Symbolic Regression with a Learned Concept Library Active Symbolic Discovery of Ordinary Differential Equations via Phase Portrait Sketching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1