Enhancing the phase change material based shell-tube thermal energy storage units with unique hybrid fins

Ying Zhang , Xiaoguang Yang , Shuli Zou , Xuefeng Xu , Yuwei Tu , Yuan Tian , Zhaoqing Ke
{"title":"Enhancing the phase change material based shell-tube thermal energy storage units with unique hybrid fins","authors":"Ying Zhang ,&nbsp;Xiaoguang Yang ,&nbsp;Shuli Zou ,&nbsp;Xuefeng Xu ,&nbsp;Yuwei Tu ,&nbsp;Yuan Tian ,&nbsp;Zhaoqing Ke","doi":"10.1016/j.icheatmasstransfer.2024.107763","DOIUrl":null,"url":null,"abstract":"<div><p>The poor thermal conductivity of phase change material (PCM) has limited its application to thermal energy storage system. The present work aims to improve the performance of PCM in a vertical shell-tube energy storage unit through unique hybrid fins. The enthalpy-porosity approach is used to numerically investigate the phase change phenomenon. Based on the straight and spiral fin results, the novelty designs of double side spiral fin and hybrid fins, i.e. spiral/straight hybrid fin and straight/spiral hybrid fin, are proposed to further optimize the PCM charging process. The effects of different fin structure, hybrid fin proportion and spiral fin angle on the liquid fraction, temperature and average thermal energy storage rate are discussed. The fin structures can reduce the melting time of PCM up to 100% compared to the no-fin case. Although double side spiral fin outperforms the straight fin for the PCM melting behavior, the hybrid fin configurations shows the best enhancement, especially for the straight/spiral hybrid fin. The optimal fin design for the straight/spiral hybrid fin case is that with 0.7 fin proportion and 180<span><math><msup><mrow></mrow><mo>°</mo></msup></math></span> spiral angle, with up to 11.8% reduction of the melting time compared to the designs of other fin proportions and spiral angles. This work demonstrates the potential of this unique hybrid fin to be integrated with PCM for efficient thermal energy storage.</p></div>","PeriodicalId":332,"journal":{"name":"International Communications in Heat and Mass Transfer","volume":null,"pages":null},"PeriodicalIF":6.4000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Communications in Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0735193324005256","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

The poor thermal conductivity of phase change material (PCM) has limited its application to thermal energy storage system. The present work aims to improve the performance of PCM in a vertical shell-tube energy storage unit through unique hybrid fins. The enthalpy-porosity approach is used to numerically investigate the phase change phenomenon. Based on the straight and spiral fin results, the novelty designs of double side spiral fin and hybrid fins, i.e. spiral/straight hybrid fin and straight/spiral hybrid fin, are proposed to further optimize the PCM charging process. The effects of different fin structure, hybrid fin proportion and spiral fin angle on the liquid fraction, temperature and average thermal energy storage rate are discussed. The fin structures can reduce the melting time of PCM up to 100% compared to the no-fin case. Although double side spiral fin outperforms the straight fin for the PCM melting behavior, the hybrid fin configurations shows the best enhancement, especially for the straight/spiral hybrid fin. The optimal fin design for the straight/spiral hybrid fin case is that with 0.7 fin proportion and 180° spiral angle, with up to 11.8% reduction of the melting time compared to the designs of other fin proportions and spiral angles. This work demonstrates the potential of this unique hybrid fin to be integrated with PCM for efficient thermal energy storage.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用独特的混合翅片改进基于相变材料的壳管式热能储存装置
相变材料(PCM)的导热性较差,限制了其在热能储存系统中的应用。本研究旨在通过独特的混合鳍片提高 PCM 在垂直壳管式储能装置中的性能。采用焓-孔隙度方法对相变现象进行数值研究。在直翅片和螺旋翅片研究结果的基础上,提出了双侧螺旋翅片和混合翅片的新颖设计,即螺旋/直混合翅片和直/螺旋混合翅片,以进一步优化 PCM 充注过程。讨论了不同翅片结构、混合翅片比例和螺旋翅片角度对液体分数、温度和平均热能储存率的影响。与无翅片情况相比,翅片结构可将 PCM 的熔化时间缩短达 100%。虽然双侧螺旋翅片在 PCM 熔化行为方面优于直翅片,但混合翅片配置显示出最佳的增强效果,尤其是直/螺旋混合翅片。直鳍片/螺旋混合鳍片的最佳鳍片设计是 0.7 的鳍片比例和 180 的螺旋角,与其他鳍片比例和螺旋角的设计相比,熔化时间最多可缩短 11.8%。这项研究表明,这种独特的混合翅片具有与 PCM 集成以实现高效热能存储的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.00
自引率
10.00%
发文量
648
审稿时长
32 days
期刊介绍: International Communications in Heat and Mass Transfer serves as a world forum for the rapid dissemination of new ideas, new measurement techniques, preliminary findings of ongoing investigations, discussions, and criticisms in the field of heat and mass transfer. Two types of manuscript will be considered for publication: communications (short reports of new work or discussions of work which has already been published) and summaries (abstracts of reports, theses or manuscripts which are too long for publication in full). Together with its companion publication, International Journal of Heat and Mass Transfer, with which it shares the same Board of Editors, this journal is read by research workers and engineers throughout the world.
期刊最新文献
A new approach for heat transfer coefficient determination in triply periodic minimal surface-based heat exchangers Experimental study of the thermal performance of a new type of PV roof Modeling of the evaporation process of a pair of sessile droplets using a point source model (PSM) Heat transfer characterization of waste heat recovery heat exchanger based on flexible hybrid triply periodic minimal surfaces (TPMS) Numerical study on the synergistic effects of ultrasonic transducers and nano-enhanced phase change material in CPU thermal management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1