{"title":"Convergent Authalic Energy Minimization for Disk Area-Preserving Parameterizations","authors":"Shu-Yung Liu, Mei-Heng Yueh","doi":"10.1007/s10915-024-02594-2","DOIUrl":null,"url":null,"abstract":"<p>An area-preserving parameterization of a surface is a bijective mapping that maps the surface onto a specified domain and preserves the local area. This paper formulates the computation of disk area-preserving parameterization as an improved optimization problem and develops a preconditioned nonlinear conjugate gradient method with guaranteed theoretical convergence for solving the problem. Numerical experiments indicate that our new approach has significantly improved area-preserving accuracy and computational efficiency compared to other state-of-the-art algorithms. Furthermore, we present an application of surface registration to illustrate the practical utility of area-preserving mappings as parameterizations of surfaces.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10915-024-02594-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
An area-preserving parameterization of a surface is a bijective mapping that maps the surface onto a specified domain and preserves the local area. This paper formulates the computation of disk area-preserving parameterization as an improved optimization problem and develops a preconditioned nonlinear conjugate gradient method with guaranteed theoretical convergence for solving the problem. Numerical experiments indicate that our new approach has significantly improved area-preserving accuracy and computational efficiency compared to other state-of-the-art algorithms. Furthermore, we present an application of surface registration to illustrate the practical utility of area-preserving mappings as parameterizations of surfaces.