Yingying Feng, Yue Jia, Guopeng Chen, Xiaoqian Sun
{"title":"Predictive modeling of Loading paths for Hydroforming of bi-layered Y-shaped tubes","authors":"Yingying Feng, Yue Jia, Guopeng Chen, Xiaoqian Sun","doi":"10.1007/s12289-024-01838-8","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, a prediction model for the pressure-axial feed loading path in the hydroforming process of a bi-layered Y-shaped tube is developed. The plastic deformation behavior of the bi-layered Y-shaped tube in the hydroforming process is investigated by categorizing the entire process into four stages: yielding, preforming, plastic forming, and shaping. By conducting stress–strain analysis on the central unit of the bi-layered Y-shaped tube branch area and incorporating the Von-Mises yield criterion, the Levy–Mises flow rule and the principle of volume invariance, rational ranges for internal pressure and axial feed at various stages of the bi-layered Y-shaped tube hydroforming process are identified. Therefore, a predictive model for the loading path of the bi-layered Y-shaped tube hydroforming process, controlled by internal pressure and axial feed under various strain conditions, is developed. The effectiveness of the prediction model was validated through finite element simulations and experimental methods. This predictive model can be used to guide the setup of loading paths for bi-layered Y-shaped tubes and other similar inclined tee tubes.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"17 4","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Material Forming","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12289-024-01838-8","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, a prediction model for the pressure-axial feed loading path in the hydroforming process of a bi-layered Y-shaped tube is developed. The plastic deformation behavior of the bi-layered Y-shaped tube in the hydroforming process is investigated by categorizing the entire process into four stages: yielding, preforming, plastic forming, and shaping. By conducting stress–strain analysis on the central unit of the bi-layered Y-shaped tube branch area and incorporating the Von-Mises yield criterion, the Levy–Mises flow rule and the principle of volume invariance, rational ranges for internal pressure and axial feed at various stages of the bi-layered Y-shaped tube hydroforming process are identified. Therefore, a predictive model for the loading path of the bi-layered Y-shaped tube hydroforming process, controlled by internal pressure and axial feed under various strain conditions, is developed. The effectiveness of the prediction model was validated through finite element simulations and experimental methods. This predictive model can be used to guide the setup of loading paths for bi-layered Y-shaped tubes and other similar inclined tee tubes.
本文建立了双层 Y 型管液压成形过程中压力-轴向进给加载路径的预测模型。通过将整个过程分为屈服、预成形、塑性成形和成形四个阶段,研究了双层 Y 型管在液压成形过程中的塑性变形行为。通过对双层 Y 型管分支区中心单元进行应力-应变分析,并结合 Von-Mises 屈服准则、Levy-Mises 流动规则和体积不变性原理,确定了双层 Y 型管水压成型过程中各阶段内压和轴向进给的合理范围。因此,建立了双层 Y 型管液压成形过程加载路径的预测模型,该模型在各种应变条件下由内部压力和轴向进给量控制。通过有限元模拟和实验方法验证了预测模型的有效性。该预测模型可用于指导双层 Y 型管和其他类似倾斜三通管的加载路径设置。
期刊介绍:
The Journal publishes and disseminates original research in the field of material forming. The research should constitute major achievements in the understanding, modeling or simulation of material forming processes. In this respect ‘forming’ implies a deliberate deformation of material.
The journal establishes a platform of communication between engineers and scientists, covering all forming processes, including sheet forming, bulk forming, powder forming, forming in near-melt conditions (injection moulding, thixoforming, film blowing etc.), micro-forming, hydro-forming, thermo-forming, incremental forming etc. Other manufacturing technologies like machining and cutting can be included if the focus of the work is on plastic deformations.
All materials (metals, ceramics, polymers, composites, glass, wood, fibre reinforced materials, materials in food processing, biomaterials, nano-materials, shape memory alloys etc.) and approaches (micro-macro modelling, thermo-mechanical modelling, numerical simulation including new and advanced numerical strategies, experimental analysis, inverse analysis, model identification, optimization, design and control of forming tools and machines, wear and friction, mechanical behavior and formability of materials etc.) are concerned.