Synergistic Enhancement of Supercapacitor Performance: Vanadium-Substituted Phosphotungstic and Molybdic Acid Combined with Polypyrrole Using Pyridinium and Ammonium Ionic Containing Organic Cation Linkers with Improved Conductivity

IF 3.6 4区 工程技术 Q3 ENERGY & FUELS Energy technology Pub Date : 2024-06-26 DOI:10.1002/ente.202400708
Muhammed Anees Puniyanikkottil, Pranay Rajendra Chandewar, Debaprasad Shee, Sib Sankar Mal
{"title":"Synergistic Enhancement of Supercapacitor Performance: Vanadium-Substituted Phosphotungstic and Molybdic Acid Combined with Polypyrrole Using Pyridinium and Ammonium Ionic Containing Organic Cation Linkers with Improved Conductivity","authors":"Muhammed Anees Puniyanikkottil,&nbsp;Pranay Rajendra Chandewar,&nbsp;Debaprasad Shee,&nbsp;Sib Sankar Mal","doi":"10.1002/ente.202400708","DOIUrl":null,"url":null,"abstract":"<p>High-performance energy-storage devices have emerged as a favored choice owing to their remarkable efficiency, sustainability, and environmental friendliness. Nowadays, polyoxometalate (POM)-based supercapacitor (SC) electrode materials have gained much attention. Herein, a few new POMs and ionic liquid (IL) composites incorporated into conducting polymer as electrode materials for SC applications are reported. The H<sub>6</sub>[PV<sub>3</sub>Mo<sub>9</sub>O<sub>40</sub>]⋅34H<sub>2</sub>O (PV<sub>3</sub>Mo<sub>9</sub>) and H<sub>6</sub>[PV<sub>3</sub>W<sub>9</sub>O<sub>40</sub>].34H<sub>2</sub>O (PV<sub>3</sub>W<sub>9</sub>) POMs are treated with tetrabutylammonium chloride and 1-butyl-4-methyl pyridinium chloride (BMP) and finally combined with polypyrrole (PPy) for the SC studies. An extensive array of analytical techniques is employed to delve into the interplay between the constituents within the composite materials, such as Fourier transform infrared spectroscopy, powder X-ray diffraction, thermogravimetric analysis, nuclear magnetic resonance (<sup>1</sup>H and <sup>13</sup>C), Field-emission scanning electron microscopy, energy-dispersive X-ray stpectroscopy, X-ray photoelectron spectroscopy, and Brunauer-Emmett-Teller surface area. The combined application of these techniques enables us to understand the interaction dynamics within composite materials comprehensively. POM–ILs combination improves the solubility issues of POMs, and doping of PPy enhances the electrochemical performances of the materials. The PV<sub>3</sub>W<sub>9</sub>–BMP–PPy symmetric SC cell shows a specific capacitance of 294.79 F g<sup>−1</sup> and an energy density of 28.89 Wh kg<sup>−1</sup> at 1 A g<sup>−1</sup> current density in 0.25 M H<sub>2</sub>SO<sub>4</sub> medium followed by an excellent cycle life of 78.6% after 10,000 galvanostatic charge–discharge cycles. The fabricated SC device is performed to light up the bulbs of red, yellow, and green light emitting diodes for 50, 30, and 28 s, respectively.</p>","PeriodicalId":11573,"journal":{"name":"Energy technology","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ente.202400708","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

High-performance energy-storage devices have emerged as a favored choice owing to their remarkable efficiency, sustainability, and environmental friendliness. Nowadays, polyoxometalate (POM)-based supercapacitor (SC) electrode materials have gained much attention. Herein, a few new POMs and ionic liquid (IL) composites incorporated into conducting polymer as electrode materials for SC applications are reported. The H6[PV3Mo9O40]⋅34H2O (PV3Mo9) and H6[PV3W9O40].34H2O (PV3W9) POMs are treated with tetrabutylammonium chloride and 1-butyl-4-methyl pyridinium chloride (BMP) and finally combined with polypyrrole (PPy) for the SC studies. An extensive array of analytical techniques is employed to delve into the interplay between the constituents within the composite materials, such as Fourier transform infrared spectroscopy, powder X-ray diffraction, thermogravimetric analysis, nuclear magnetic resonance (1H and 13C), Field-emission scanning electron microscopy, energy-dispersive X-ray stpectroscopy, X-ray photoelectron spectroscopy, and Brunauer-Emmett-Teller surface area. The combined application of these techniques enables us to understand the interaction dynamics within composite materials comprehensively. POM–ILs combination improves the solubility issues of POMs, and doping of PPy enhances the electrochemical performances of the materials. The PV3W9–BMP–PPy symmetric SC cell shows a specific capacitance of 294.79 F g−1 and an energy density of 28.89 Wh kg−1 at 1 A g−1 current density in 0.25 M H2SO4 medium followed by an excellent cycle life of 78.6% after 10,000 galvanostatic charge–discharge cycles. The fabricated SC device is performed to light up the bulbs of red, yellow, and green light emitting diodes for 50, 30, and 28 s, respectively.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超级电容器性能的协同增强:钒取代磷钨酸和钼酸与聚吡咯结合,使用含吡啶鎓和铵离子的有机阳离子连接体提高传导性
高性能储能设备因其卓越的效率、可持续性和环境友好性而备受青睐。如今,基于聚氧化物金属盐(POM)的超级电容器(SC)电极材料已备受关注。本文报告了几种新的 POM 和离子液体(IL)复合材料,并将其融入导电聚合物中,作为超级电容器应用的电极材料。H6[PV3Mo9O40]⋅34H2O(PV3Mo9)和 H6[PV3W9O40].34H2O(PV3W9)POM 经四丁基氯化铵和 1-丁基-4-甲基吡啶氯化铵(BMP)处理,最后与聚吡咯(PPy)结合,用于电离研究。为了深入研究复合材料中各成分之间的相互作用,我们采用了一系列分析技术,如傅立叶变换红外光谱、粉末 X 射线衍射、热重分析、核磁共振(1H 和 13C)、场发射扫描电子显微镜、能量色散 X 射线光谱、X 射线光电子能谱和布鲁瑙尔-艾美特-泰勒表面积。这些技术的综合应用使我们能够全面了解复合材料内部的相互作用动力学。POM-ILs 组合改善了 POM 的溶解性问题,而 PPy 的掺杂则提高了材料的电化学性能。在 0.25 M H2SO4 介质中,PV3W9-BMP-PPy 对称 SC 电池的比电容为 294.79 F g-1,在 1 A g-1 电流密度下的能量密度为 28.89 Wh kg-1,在 10,000 次电静态充放电循环后,其循环寿命达到 78.6%。所制造的 SC 器件可分别点亮红色、黄色和绿色发光二极管灯泡 50 秒、30 秒和 28 秒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy technology
Energy technology ENERGY & FUELS-
CiteScore
7.00
自引率
5.30%
发文量
0
审稿时长
1.3 months
期刊介绍: Energy Technology provides a forum for researchers and engineers from all relevant disciplines concerned with the generation, conversion, storage, and distribution of energy. This new journal shall publish articles covering all technical aspects of energy process engineering from different perspectives, e.g., new concepts of energy generation and conversion; design, operation, control, and optimization of processes for energy generation (e.g., carbon capture) and conversion of energy carriers; improvement of existing processes; combination of single components to systems for energy generation; design of systems for energy storage; production processes of fuels, e.g., hydrogen, electricity, petroleum, biobased fuels; concepts and design of devices for energy distribution.
期刊最新文献
Cover Picture Masthead Simulation and Experimental Research on a New Symmetrical Hydraulic Piezoelectric Energy Harvester Theoretical Investigation on Carbazole Derivatives as Charge Carriers for Perovskite Solar Cell Ultrasmall Fe‐Nanoclusters‐Anchored Carbon Polyhedrons Interconnected with Carbon Nanotubes for High‐Performance Zinc‐Air Batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1